• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

블레이드의 표면 결함 검출을 위한 Faster R-CNN 딥러닝 모델 구축 (Construction of Faster R-CNN Deep Learning Model for Surface Damage Detection of Blade Systems)

7 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2019.12
7P 미리보기
블레이드의 표면 결함 검출을 위한 Faster R-CNN 딥러닝 모델 구축
  • 미리보기

    서지정보

    · 발행기관 : 한국구조물진단유지관리공학회
    · 수록지 정보 : 한국구조물진단유지관리공학회 논문집 / 23권 / 7호 / 80 ~ 86페이지
    · 저자명 : 장지원, 안효준, 이종한, 신수봉

    초록

    컴퓨터 성능 향상으로 다양한 분야에서 딥러닝을 활용한 연구가 활발히 진행되고 있으며 최근에는 구조물 안전성 평가 연구에도 그 적용이 이루어지고 있다. 특히 터빈의 내부 블레이드는 분리가 쉽지 않고 어두운 주변 환경으로 인해 블레이드의 표면 결함 검출은 전문 인력의 경험에 의존하고 있으며, 점검시간도 상당히 소요되고 있는 실정이다. 따라서, 본 연구에서는 딥러닝 기술을 적용하여 터빈 구조의 부재 중 하나인 내부 블레이드에 발생하는 결함을 검출할 수 있는 효율적인 방법을 제시하였다. Faster R-CNN 인공신경망 기법을 활용하여 결함의 이미지 데이터를 학습하였고 부족한 이미지는 필터링과 Image Data Generator를 이용하여 데이터를 확장하였다. 그 결과 블레이드의 결함을 학습한 딥러닝 모델은 평균적으로 약 96.1%의 정확도와 재현율은 95.3%, 정밀도는 96%의 성능을 보였다. 재현율을 통해 제시된 딥러닝 모델이 결함을 탐지하지 못하는 경우는 4.7% 로 나타났다. 재현율의 성능은 여러 환경의 많은 결함 이미지 데이터를 수집하고 확장하여 딥러닝 학습에 적용함으로써 더욱 향상되리라 판단된다. 이러한 실제 블레이드의 결함 이미지 데이터 확보와 학습을 통해 향후 터빈엔진 정비에 적용 가능한 결함 검출 시스템으로 발전할 수 있을 것이다.

    영어초록

    As computer performance improves, research using deep learning are being actively carried out in various fields. Recently, deep learning technology has been applying to the safety evaluation for structures. In particular, the internal blades of a turbine structure requires experienced experts and considerable time to detect surface damages because of the difficulty of separation of the blades from the structure and the dark environmental condition. This study proposes a Faster R-CNN deep learning model that can detect surface damages on the internal blades, which is one of the primary elements of the turbine structure. The deep learning model was trained using image data with dent and punch damages. The image data was also expanded using image filtering and image data generator techniques. As a result, the deep learning model showed 96.1% accuracy, 95.3% recall, and 96% precision. The value of the recall means that the proposed deep learning model could not detect the blade damages for 4.7%. The performance of the proposed damage detection system can be further improved by collecting and extending damage images in various environments, and finally it can be applicable for turbine engine maintenance.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국구조물진단유지관리공학회 논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 04일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:26 오전