• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

딥러닝을 이용한 범용적 스테그아날리시스 (Generalized Steganalysis using Deep Learning)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
6 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2017.04
6P 미리보기
딥러닝을 이용한 범용적 스테그아날리시스
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회 컴퓨팅의 실제 논문지 / 23권 / 4호 / 244 ~ 249페이지
    · 저자명 : 김현재, 이재구, 김규완, 윤성로

    초록

    스테그아날리시스(Steganalysis)란 이미지 등 일반적인 자료에 암호화된 정보를 은닉하는 스테가노그래피(Steganography)에 대한 검출 및 분석 방법으로, 기계학습 기반 방법론을 포함한다. 기존 기계학습 기반 스테그아날리시스는 영상(Image)의 특징(Feature) 추출 및 모델링에 기반하며, 최근 딥러닝(Deep Learning)의 적용으로 검출 정확도가 큰 폭으로 향상되었다. 하지만 현존하는 스테그아날리시스 모델은 단일 스테가노그래피 기법에 대해 국한되어 있어 학습에 사용되지 않은 스테고(Stego) 이미지의 경우 검출이 불가능한 결정적 한계를 가진다. 본 연구에서는 다양한 스테가노그래피 기법으로 생성된 스테고이미지에 딥러닝을 적용하여 스테그아날리시스를 학습하는 범용적 모델을 제안한다. 다양한 실험을 통해 제안 기법의 효용성 및 가능성을 확인하고, 범용적 스테그아날리시스 모델이 각각에 특화된 검출 기법과 유사한 정확도로 스테고 이미지를 검출할 수 있음을 보인다.

    영어초록

    Steganalysis is to detect information hidden by steganography inside general data such as images. There are stegoanalysis techniques that use machine learning (ML). Existing ML approaches to steganalysis are based on extracting features from stego images and modeling them.
    Recently deep learning-based methodologies have shown significant improvements in detection accuracy. However, all the existing methods, including deep learning-based ones, have a critical limitation in that they can only detect stego images that are created by a specific steganography method. In this paper, we propose a generalized steganalysis method that can model multiple types of stego images using deep learning. Through various experiments, we confirm the effectiveness of our approach and envision directions for future research. In particular, we show that our method can detect each type of steganography with the same level of accuracy as that of a steganalysis method dedicated to that type of steganography, thereby demonstrating the general applicability of our approach to multiple types of stego images.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회 컴퓨팅의 실제 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 17일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:43 오후