• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

콘크리트 라이닝 균열 분할 딥러닝 모델 평가 방법 (An evaluation methodology for cement concrete lining crack segmentation deep learning model)

12 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2022.11
12P 미리보기
콘크리트 라이닝 균열 분할 딥러닝 모델 평가 방법
  • 미리보기

    서지정보

    · 발행기관 : 사단법인 한국터널지하공간학회
    · 수록지 정보 : 한국터널지하공간학회 논문집 / 24권 / 6호 / 513 ~ 524페이지
    · 저자명 : 함상우, 배수현, 이임평, 이규필, 김동규

    초록

    터널을 비롯한 여러 가지 기반시설물에 발생한 콘크리트 균열을 영상과 딥러닝 기반으로 자동 탐지하는 연구가 최근 활발히 이루어지고 있다. 이러한 연구성과를 실제 현장에 적용하려면 딥러닝 모델의 신뢰성을 설명할 수 있어야한다. 본 연구에서는 선형성이 강한 균열의 기하적인 특성을 고려했을 때 화소 기반으로 계산하는 기존 평가지표가 충분치 않다는 점을 지적하며, 균열 분할 딥러닝 모델의 성능을 더 합리적으로 설명할 수 있는 다른 평가지표를 제시하고 비교 분석한다. 먼저 선형 객체의 유사성을 측정할 수 평가방법을 제시한다. 구체적으로는 기준 데이터에 허용 버퍼(tolerance buffer)를 부여하여 평가하는 방법을 설계, 구현, 검증한다. 실험 결과 본 연구에서 제안하는 방법은 균열 분할 딥러닝 모델 평가시 기존 대비 과대평가 또는 과소평가 문제를 해결할 수 있었으며, 화소 기반 성능 평가 지표에 비해 균열 분할 딥러닝 모델의 성능을 더 잘 설명할 것으로 기대한다.

    영어초록

    Recently, detecting damages of civil infrastructures from digital images using deep learning technology became a very popular research topic. In order to adapt those methodologies to the field, it is essential to explain robustness of deep learning models. Our research points out that the existing pixel-based deep learning model evaluation metrics are not sufficient for detecting cracks since cracks have linear appearance, and proposes a new evaluation methodology to explain crack segmentation deep learning model more rationally. Specifically, we design, implement and validate a methodology to generate tolerance buffer alongside skeletonized ground truth data and prediction results to consider overall similarity of topology of the ground truth and the prediction rather than pixel-wise accuracy. We could overcome over-estimation or under-estimation problem of crack segmentation model evaluation through using our methodology, and we expect that our methodology can explain crack segmentation deep learning models better.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국터널지하공간학회 논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 02일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:22 오후