• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

도로위험도를 평가하는 요구/노력모형의 신뢰도 향상을 위한 신경망 모형 개발 (The Development of Neural Network Model to Improve the Reliability of the Demand/Effort Model for Evaluating Highway Safety)

11 페이지
기타파일
최초등록일 2025.04.12 최종저작일 2009.04
11P 미리보기
도로위험도를 평가하는 요구/노력모형의 신뢰도 향상을 위한 신경망 모형 개발
  • 미리보기

    서지정보

    · 발행기관 : 대한교통학회
    · 수록지 정보 : 대한교통학회지 / 27권 / 2호 / 95 ~ 105페이지
    · 저자명 : 정봉조, 강재수, 장명순

    초록

    도로환경요인과 운전자의 능력의 부조화상태에서 교통사고 위험성이 높아진다는 개념으로부터 도로위험수준을 평가를 하고자 하는 것이 요구-노력모형이다. 본 연구에서는 요구-노력모형의 노력수준을 결정하는 운전자 생체신호의 재분석을 통하여 요구-노력모형의 신뢰성을 높일 수 있는 새로운 신경망 모형구조를 제안하였다. 영동, 호남 및 서해안고속도로에서 149명의 피실험자를 대상으로 검증한 연구결과는 다음과 같이 나타났다. 첫째, 생체신호 파라메타 값에 대하여 Normality Test, Cluster Analysis와 Mann-Whitney 분석에서 기존 요구-노력 모형에서 사용하던 10개의 생체신호 중 5개의 생체신호만이 통계적으로 유의함을 입증하였다. 둘째, 신경망모형은 운전자의 노력수준의 평가에 대한 정확도는 매우 높게 나타났다. 신경망구축을 위해 사용한 집단1의 피실험자별 전체 노력수준의 정확도는 80.0%, 집단 2의 피실험자별 전체 노력수준의 정확도가 74.3%로 나타났다. 셋째, 요구-노력모형에서 노력수준 경계값 결정방법에 따라 호남고속도로 전주IC→회덕JCT구간의 단위분석지점에 대하여 도로위험도를 판별한 결과, 2종 오류가 신경망모형 40.5%, 기존 모형 58.8%로 나타났다. 요구-노력모형에 의한 도로위험도 평가가 최종적이기 보다는 전문가 그룹에 의한 상세한 도로안전진단에 앞서 도로위험도를 대략적으로 판별하고자 하는 의도였다고 한다면 보다 많은 검토대상구간을 판별하고, 더 낮은 2종 오류비율을 보인 신경망을 이용한 방법이 요구-노력모형의 취지에 적합하다고 볼 수 있다.

    영어초록

    Traffic accidents on highways are likely to happen when there is an imbalance in the complex relationships among key elements such as road geometries, driver related factors, and mechanical performances. The Demand-Effort Model (DEM), which evaluates highway safety, can be explained by the imbalance, which occurs when the level of demand of the driver’s attention to the road environment exceeds that of the response from the driver. This study suggests a new model that improves the reliability of the current DEM through the reinterpretation on the physiological signals with the help of the Neural Network Model (NNM). The data were collected from 149 subjects, who drove a test vehicle on the Yongdong, Honam, and Seohaean Expressways in Korea. Three important results could be drawn from the recursive tests as follows; ① Only 5 out of 10 parameters on the physiological signals which are currently used were proven to be meaningful through the Normality Test, Cluster Analysis, and Mann-Whitney Analysis. ② The revised DEM, which internally uses the NNM, showed more reliable results than existing DEM. Group 1, which is based on the new DEM showed 80.0% of accuracy in measuring the level of driver’s efforts, however, that of Group 2 based on the current DEM was 74.3%. ③ Field tests on the Honam Expressway showed lower ‘type II error’ with the new DEM (40.5%) than the old DEM (58.8%). The DEM is designed as a quick and easy way to determine highway safety prior to the minute road safety audit (RSA) by a professional audit team. Then a new DEM, which is based on the NNM, needs to be considered since it showed higher reliability and lower error.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한교통학회지”의 다른 논문도 확인해 보세요!

찾으시던 자료가 아닌가요?

지금 보는 자료와 연관되어 있어요!
왼쪽 화살표
오른쪽 화살표
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 11일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:33 오전