• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

대용량 이력자료를 활용한 다중시간대 고속도로 교통량 예측 (Multiple Period Forecasting of Motorway Traffic Volumes by Using Big Historical Data)

8 페이지
기타파일
최초등록일 2025.04.10 최종저작일 2018.02
8P 미리보기
대용량 이력자료를 활용한 다중시간대 고속도로 교통량 예측
  • 미리보기

    서지정보

    · 발행기관 : 대한토목학회
    · 수록지 정보 : 대한토목학회논문집(국문) / 38권 / 1호 / 73 ~ 80페이지
    · 저자명 : 장현호, 윤병조

    초록

    고속도로 교통류 제어는 기존의 Reactive 방식(실시간 대응)에서 Proactive 방식(사전 대응)으로 발전하고 있다. 첨단 고속도로 교통류 제어의 핵심 입력자료 중 하나는 여러 시간대에 걸치는 장래 교통량 상태이다. 다중 시간대 교통량 예측을 위해서는 장래 상태의 불확실성을 극복해야한다. 이는 예측 시간대의 확장에 따라 장래 상태의 불확실성은 증가하기 때문이다. 따라서 다중 시간대 교통량 예측을 위해서는 장래 상태의 불확실성을 효과적으로 극복할 수 있는 실행 가능한 방안이 필요하다. 본 연구에서는 대용량 이력자료에 내재된 교통류 상태의 시간적 진화 행태를 이용하여 장래 상태의 불확실성을 효과적으로 극복함으로써 다중 시간대 장래 교통량 상태를 예측하는 모형을 제시하도록 한다. 개발 모형은 현행 교통량의 상태 진화를 기반으로 대용량 자료에 내재된 과거 상태를 추출하고, 이를 이용하여 장래 상태를 예측한다. 추가로, 개발된 모형은 실제 적용을 고려하여 자료관리시스템에 적합하도록 설계되었다. 적용결과, 개발모형은 다중 시간대에 걸치는 불확실성을 효과적으로 극복함으로써 우수한 예측력을 보였으며, 첨단자료관리시스템에 실제 적용이 가능하다고 판단된다.

    영어초록

    In motorway traffic flow control, the conventional way based on real-time response has been changed into advanced way based on proactive response. Future traffic conditions over multiple time intervals are crucial input data for advanced motorway traffic flow control. It is necessary to overcome the uncertainty of the future state in order for forecasting multiple-period traffic volumes, as the number of uncertainty concurrently increase when the forecasting horizon expands. In this vein, multi-interval forecasting of traffic volumes requires a viable approach to conquer future uncertainties successfully. In this paper, a forecasting model is proposed whicheffectively addresses the uncertainties of future state based on the behaviors of temporal evolution of traffic volume states that intrinsically exits in the big past data. The model selects the past states from the big past data based on the state evolution of current traffic volumes, and then the selected past states are employed for estimating future states. The model was also designed to be suitable for data management systems in practice. Test results demonstrated that the model can effectively overcome the uncertainties over multiple time periods and can generate very reliable predictions in term of prediction accuracy. Hence, it is indicated that the model can be mounted and utilized on advanced data management systems.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한토목학회논문집(국문)”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 01일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:41 오전