• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

다변량 시계열분석을 활용한 정보보호 자료 예측 (Multivariate Time Series Modeling for Information Security Data)

10 페이지
기타파일
최초등록일 2025.04.08 최종저작일 2015.06
10P 미리보기
다변량 시계열분석을 활용한 정보보호 자료 예측
  • 미리보기

    서지정보

    · 발행기관 : 한국자료분석학회
    · 수록지 정보 : Journal of The Korean Data Analysis Society / 17권 / 3호 / 1309 ~ 1318페이지
    · 저자명 : 최한용, 정형철

    초록

    본 연구에서는 다변량 시계열 분석을 사용하여 정보보호 자료에 대한 모형화 및 미래 예측 문제를 다루었다. 특히, 도메인 등록건수, 악성코드 피해신고, 해킹사고 접수처리, MC-Finder 탐지건수, 그리고 허니넷 유입 악성코드 수 등 다섯 가지 정보보호 자료를 시계열 분석에 활용하였다. 시계열 간 1차 상관성에 관심을 둔 유사지수를 사용하여 다섯 가지 자료의 연관성을 살펴보고, 유사지수에 따라 정보보호 변수들을 (도메인, 악성코드, 해킹)과 (악성코드, MC-Finder, 허니넷)이라는 두 집단으로 분리한 후 각 집단에 대한 상태공간분석을 시도하였다. 도메인, 악성코드, 해킹 집단에 대해서는 VARMA(2,1) 모형이, 악성코드, MC-Finder, 허니넷 그룹에 대해서는 VARMA(1,1) 모형이 적합되었다. VARMA(2,1) 모형에서는 AR 계열들의 관련성이, VARMA(1,1)에서는 MA 계열들의 관련성이 주로 관찰되었는데, 악성코드의 경우 MC-Finder의 한 시점 전에 양의 영향을 받고 있음을 확인하였다. RMSE를 사용하여 다변량 모형과 지수평활법, 단변량 ARIMA 모형 등 일변량 모형과의 예측력을 비교하였는데, 허니넷을 제외하면 다변량 ARMA 모형의 RMSE가 일변량 시계열모형보다 낮게 나타나 다변량 모형 적합이 적절함을 확인하였다.

    영어초록

    In this paper, we considered the multivariate time series analysis using the state space model related to information securities data which were the numbers of Korean domain registration, the numbers of receipt for hacking incidents, reporting numbers of malware, the numbers of detection in MC-Finder system, and influx numbers of malware into Honey net. The similarity index was used to explore the relevance between the variables. The VARMA(2,1) was fitted for the variables of domain, malware and hacking, and VARMA(1,1) was fitted for the variables of malware, MC-Finder and Honey net. There was a AR term mainly involved in VARMA(2,1) and a MA term involved in VARMA(1,1). Especially, malware was affected by the 1-step previous values of MC-Finder. For the comparison of forecasting capability, we used the RMSE of exponential smoothing model and autoregressive integrated moving average model. Except Honey-net series, multivariate model was provided better forecasting performance than the other univariate time series models.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“Journal of The Korean Data Analysis Society”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 프레시홍 - 추석
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 26일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:48 오후