• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

딥러닝 기반 다변량 시계열 데이터 보정기법 (Deep Learning-based Multivariate Time Series Data Correction Method)

16 페이지
기타파일
최초등록일 2025.04.08 최종저작일 2023.08
16P 미리보기
딥러닝 기반 다변량 시계열 데이터 보정기법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 데이타베이스연구 / 39권 / 2호 / 47 ~ 62페이지
    · 저자명 : 정한석, 김한준

    초록

    본 논문은 딥러닝 기반 이상탐지 모델과 변수들 간의 관계를 고려하는 예측모델을 이용하여 다변량 시계열 데이터의 품질을 개선하는 보정기법을 제안한다. 다변량 시계열 데이터는 시간적 특성뿐만 아니라 변수들 간의 관계가 동시에 고려되어야 한다. 이러한 특성을 고려하기 위해 본 논문에서는 모델 학습 과정에서 변수들 간의 학습을 위해 상관계수 행렬을 학습하는 Attention 기반 LSTM 예측모델을 제안하고, 이 모델을 이용하여 다변량 시계열 데이터 보정을 수행한다. 먼저 기존 연구인 LSTM 기반 VAE-GAN 이상탐지 모델을 이용하여 데이터 내에 존재하는 이상값을 탐지하고, 본 논문에서 제안하는 예측모델로 이상으로 탐지된 해당 윈도우를 예측한다. 그 다음, 예측된 윈도우를 정상 윈도우를 잘 생성하도록 학습된 이상탐지 모델의 생성자에 전달하여 재생성한 윈도우로 이상 윈도우를 대체함으로써 보정을 수행한다.

    영어초록

    This paper proposes a correction method to improve the quality of multivariate time series data by using a deep learning-based anomaly detection model and a prediction model that considers the relationship between variables. Multivariate time series data should be considered not only for its temporal characteristics but also for the relationships between variables. In order to consider these characteristics, this paper proposes an attention-based LSTM prediction model that trains a correlation matrix to consider the relationship between variables in the model training process, and uses this model to correct multivariate time series data. First, we detect anomalies in the data using an existing study, the LSTM-based VAE-GAN anomaly detection model, and predict the corresponding windows that are detected as anomalies with the prediction model proposed in this paper. Then, we forward the predicted windows to the generator of the anomaly detection model, which is trained to generate normal-like windows, and perform the correction by replacing the abnormal windows with the generated windows.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 08일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:40 오후