PARTNER
검증된 파트너 제휴사 자료

3차원 뇌 자기공명 영상의 비지도 학습 기반 비강체 정합 네트워크 (Unsupervised Non-rigid Registration Network for 3D Brain MR images)

11 페이지
기타파일
최초등록일 2025.03.31 최종저작일 2019.10
11P 미리보기
3차원 뇌 자기공명 영상의 비지도 학습 기반 비강체 정합 네트워크
  • 미리보기

    서지정보

    · 발행기관 : 한국차세대컴퓨팅학회
    · 수록지 정보 : 한국차세대컴퓨팅학회 논문지 / 15권 / 5호 / 64 ~ 74페이지
    · 저자명 : 오동건, 김보형, 이정진, 신영길

    초록

    비강체 정합은 임상적 필요성은 높으나 계산 복잡도가 높고, 정합의 정확성 및 강건성을 확보하기 어려운 분야이다. 본 논문은 비지도 학습 환경에서 3차원 뇌 자기공명 영상 데이터에 딥러닝 네트워크를 이용한 비강체 정합 기법을 제안한다. 서로 다른 환자의 두 영상을 입력받아 네트워크를 통하여 두 영상 간의 특징 벡터를 생성하고, 변위 벡터장을 만들어 기준 영상에 맞추어 다른 쪽 영상을 변형시킨다. 네트워크는 U-Net 형태를 기반으로 설계하여 정합 시 두 영상의 전역적, 지역적인 차이를 모두 고려한 특징 벡터를 만들 수 있고, 손실함수에 균일화 항을 추가하여 3차원 선형보간법 적용 후에 실제 뇌의 움직임과 유사한 변형 결과를 얻을 수 있다. 본 방법은 비지도 학습을 통해 임의의 두 영상만을 입력으로 받아 단일 패스 변형으로 비강체 정합을 수행한다. 이는 반복적인 최적화 과정을 거치는 비학습 기반의 정합 방법들보다 빠르게 수행할 수 있다. 실험은 50명의 뇌를 촬영한 3차원 자기공명 영상을 가지고 수행하였고, 정합 전·후의 Dice Similarity Coefficient 측정 결과 평균 0.690으로 정합 전과 비교하여 약 16% 정도의 유사도 향상을 확인하였다. 또한, 비학습 기반 방법과 비교하여 유사한 성능을 보여주면서 약 10,000배 정도의 속도 향상을 보여주었다. 제안 기법은 다양한 종류의 의료 영상 데이터의 비강체 정합에 활용이 가능하다.

    영어초록

    Although a non-rigid registration has high demands in clinical practice, it has a high computational complexity and it is very difficult for ensuring the accuracy and robustness of registration. This study proposes a method of applying a non-rigid registration to 3D magnetic resonance images of brain in an unsupervised learning environment by using a deep-learning network. A feature vector between two images is produced through the network by receiving both images from two different patients as inputs and it transforms the target image to match the source image by creating a displacement vector field. The network is designed based on a U-Net shape so that feature vectors that consider all global and local differences between two images can be constructed when performing the registration. As a regularization term is added to a loss function, a transformation result similar to that of a real brain movement can be obtained after the application of trilinear interpolation. This method enables a non-rigid registration with a single-pass deformation by only receiving two arbitrary images as inputs through an unsupervised learning. Therefore, it can perform faster than other non-learning-based registration methods that require iterative optimization processes. Our experiment was performed with 3D magnetic resonance images of 50 human brains, and the measurement result of the dice similarity coefficient confirmed an approximately 16% similarity improvement by using our method after the registration. It also showed a similar performance compared with the non-learning-based method, with about 10,000 times speed increase. The proposed method can be used for non-rigid registration of various kinds of medical image data.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국차세대컴퓨팅학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:42 오후