• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

Inception V3를 이용한 뇌 실질 MRI 영상 분류의 정확도 평가 (Accuracy Evaluation of Brain Parenchymal MRI Image Classification Using Inception V3)

6 페이지
기타파일
최초등록일 2025.03.31 최종저작일 2019.09
6P 미리보기
Inception V3를 이용한 뇌 실질 MRI 영상 분류의 정확도 평가
  • 미리보기

    서지정보

    · 발행기관 : 한국융합신호처리학회
    · 수록지 정보 : 융합신호처리학회 논문지 / 20권 / 3호 / 132 ~ 137페이지
    · 저자명 : 김지율, 예수영

    초록

    의료영상으로 생성된 데이터의 양은 전문적인 시각적 분석 한계를 점점 초과하여, 자동화된 의료영상 분석의 필요성이 증가되고 있는 실정이다. 이러한 이유 등으로 인하여 본 논문에서는 정상소견과 종양소견을 보이는 각각의 뇌 실질 MRI 의료영상을 이용하여 Inception V3 딥러닝 모델을 이용한 종양 유무에 따른 분류 및 정확도를 평가하였다. 연구 결과, 딥러닝 모델의 정확도 평가는 학습 데이터 세트의 경우 90%, 검증 데이터 세트의 경우 86%의 정확도를 나타내었다. 손실률 평가에서는 학습 데이터 세트의 경우 0.56, 검증 데이터 세트의 경우 1.28의 손실률을 나타내었다. 향 후 연구에서는 딥러닝 모델의 성능 향상 및 평가의 신뢰성 확보를 위하여 공개된 의료영상의 데이터를 충분히 확보하고, 라벨링 분류 작업을 통한 라벨링의 정확도를 개선하여 모델링을 구현해 볼 필요가 있다고 사료된다.

    영어초록

    The amount of data generated from medical images is increasingly exceeding the limits of professional visual analysis, and the need for automated medical image analysis is increasing. For this reason, this study evaluated the classification and accuracy according to the presence or absence of tumor using Inception V3 deep learning model, using MRI medical images showing normal and tumor findings. As a result, the accuracy of the deep learning model was 90% for the training data set and 86% for the validation data set. The loss rate was 0.56 for the training data set and 1.28 for the validation data set. In future studies, it is necessary to secure the data of publicly available medical images to improve the performance of the deep learning model and to ensure the reliability of the evaluation, and to implement modeling by improving the accuracy of labeling through labeling classification.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 05일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:50 오후