• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

시정계 자료와 기계학습 기법을 이용한 지역 안개예측 모형 개발 (Developing a regional fog prediction model using tree-based machine-learning techniques and automated visibility observations)

9 페이지
기타파일
최초등록일 2025.03.19 최종저작일 2021.12
9P 미리보기
시정계 자료와 기계학습 기법을 이용한 지역 안개예측 모형 개발
  • 미리보기

    서지정보

    · 발행기관 : 한국수자원학회
    · 수록지 정보 : 한국수자원학회 논문집 / 54권 / 12호 / 1255 ~ 1263페이지
    · 저자명 : 김대하

    초록

    안개는 대체수자원이 될 수 있으나 교통사고 위험을 높이고 공항 운영에 제약을 가하는 사회적 영향이 큰 기상현상이다. 본 연구에서는 1 km 미만 가시거리(시정)로 정의되는 안개 발생을 기상자료로 예측하는 지역 기계학습모형을 개발하고 그 예측력을 평가하였다. 전라북도 지역의 10개 기상청 지상관측소의 2017-2019년 시정 및 기상관측자료로 앙상블 분류기법인 Extreme Gradient Boosting (XGB), Light Gradient Boosting (LGB), Random Forests (RF)를 학습시켜 지역 안개 모형을 개발하였고 독립적인 2020년 자료로 모형의 사용성을 평가하였다. 그 결과, 학습·검증기간(2017-2019)에는 True Skill Score를 기준으로 가장 높은 예측력을 보인 방법은 LGB 기법이었지만 다른 두 모형에 비해 False Alarm Ratio가 컸다. RF 모형과 XGB 방법 역시 기존 연구에 상응하는 예측성능을 보이는 것으로 확인되었다. 2020년 자료를 입력해 안개 발생을 모의했을 때 세 모형의 예측성능은 2017-2019년 기간보다 떨어졌지만 모두 관측 안개일수의 공간분포와 일관되는 안개 위험을 예측했다. 세 기계학습 모형은 안개위험이 상대적으로 높은 지역을 추출하는 기법으로 사용이 가능할 것으로 보인다.

    영어초록

    While it could become an alternative water resource, fog could undermine traffic safety and operational performance of infrastructures. To reduce such adverse impacts, it is necessary to have spatially continuous fog risk information. In this work, tree-based machine-learning models were developed in order to quantify fog risks with routine meteorological observations alone. The Extreme Gradient Boosting (XGB), Light Gradient Boosting (LGB), and Random Forests (RF) were chosen for the regional fog models using operational weather and visibility observations within the Jeollabuk-do province. Results showed that RF seemed to show the most robust performance to categorize between fog and non-fog situations during the training and evaluation period of 2017-2019. While the LGB performed better than in predicting fog occurrences than the others, its false alarm ratio was the highest (0.695) among the three models. The predictability of the three models considerably declined when applying them for an independent period of 2020, potentially due to the distinctively enhanced air quality in the year under the global lockdown. Nonetheless, even in 2020, the three models were all able to produce fog risk information consistent with the spatial variation of observed fog occurrences. This work suggests that the tree-based machine learning models could be used as tools to find locations with relatively high fog risks.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국수자원학회 논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 26일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:58 오전