• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

UAV 자료와 객체기반영상분석을 활용한 대축척 갯벌 표층 퇴적상 분류도 작성 (Generation of Large-scale Map of Surface Sedimentary Facies in Intertidal Zone by Using UAV Data and Object-based Image Analysis (OBIA))

16 페이지
기타파일
최초등록일 2025.03.15 최종저작일 2020.04
16P 미리보기
UAV 자료와 객체기반영상분석을 활용한 대축척 갯벌 표층 퇴적상 분류도 작성
  • 미리보기

    서지정보

    · 발행기관 : 대한원격탐사학회
    · 수록지 정보 : 대한원격탐사학회지 / 36권 / 2호 / 277 ~ 292페이지
    · 저자명 : 김계림, 유주형

    초록

    본 연구에서는 천수만 황도 갯벌 지역을 대상으로 UAV 자료와 객체기반영상분석 방법을 사용하여 대축척 갯벌 표층 퇴적상 분류도를 작성하고, 정확도 검증을 수행하여 정밀한 표층 퇴적상 분류의 가능성과 보다정확한 분류 방법에 대해 제시하였다. 이를 위해 고해상도 UAV 자료에서 가시광 영역의 정사영상과 수치표고모델(DEM), 조류로 밀도 등 퇴적상 분류 시 영향을 주는 요인들을 추출하고, 통계학적 분석 방법을 통해 퇴적상에 따른 요인들의 주성분을 분석하였다. 주성분 요인을 바탕으로 퇴적상 분류 시 사용할 입력 자료를 (1) 가시광 영역의 스펙트럼, (2) 지형 고도와 조류로 밀도, (3) 가시광 영역의 스펙트럼과 지형 고도 및 조류로 밀도로구분하였으며, 이를 기반으로 객체기반영상분석 분류방법에 입력 자료를 적용하여 대축척 갯벌 표층 퇴적상분류도를 추출하였다. 입력 자료의 조건에 따라 표층 퇴적상 분류를 수행한 결과, folk 분류 기준을 따르는 6가지의 표층 퇴적상으로 분류하였고, 가시광 영역의 스펙트럼과 지형 고도, 조류로 밀도를 사용할 경우 전체 정확도가 63.04%, Kappa 지수가 0.54로 가장 효과적으로 표층 퇴적상을 분류하였다.

    영어초록

    The purpose of this study is to propose the possibility of precise surface sedimentary facies classification and a more accurate classification method by generating the large-scale map of surface sedimentary facies based on UAV data and object-based image analysis (OBIA) for Hwang-do tidal flat in Cheonsu bay. The very high resolution UAV data extracted factors that affect the classification of surface sedimentary facies, such as RGB ortho imagery, Digital elevation model (DEM), and tidal channel density, and analyzed the principal components of surface sedimentary facies through statistical analysis methods. Based on principal components, input data to be used for classification of surface sedimentary facies were divided into three cases such as (1) visible band spectrum, (2) topographical elevation and tidal channel density, (3) visible band spectrum and topographical elevation, tidal channel density. The object-based image analysis classification method was applied to map the classification of surface sedimentary facies according to conditions of input data. The surface sedimentary facies could be classified into a total of six sedimentary facies following the folk classification criteria. In addition, the use of visible band spectrum, topographical elevation, and tidal channel density enabled the most effective classification of surface sedimentary facies with a total accuracy of 63.04% and the Kappa coefficient of 0.54.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한원격탐사학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 03일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:42 오후