• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

자료 지향형 수위예측 모형의 비교 분석

방대한 850만건의 자료 중 주제별로 만들수 있는 최적의 산출물을 해피 캠퍼스에서 체험 하세요 전문가의 지식과 인사이트를 활용하여 쉽고 폭넓게 이해하고 적용할수 있는 기회를 놓치지 마세요
19 페이지
어도비 PDF
최초등록일 2015.03.25 최종저작일 2011.12
19P 미리보기
자료 지향형 수위예측 모형의 비교 분석
  • * 본 문서는 배포용으로 복사 및 편집이 불가합니다.

    미리보기

    서지정보

    · 발행기관 : 한국습지학회
    · 수록지 정보 : 한국습지학회지 / 13권 / 3호
    · 저자명 : 최승용, 한건연, 최현구

    목차

    요약
    Abstract
    1. 서론
    2. 기본 이론
    3. 모형의 구축
    4. 모의결과 및 비교검토
    5. 결론
    감사의 글
    참고문헌

    초록

    수위예측을 위해 개념적, 물리적 모형들을 포함한 다양한 유형의 기법들이 사용되고 있다. 그럼에도 불구하고 이러한 기법들 중 수위예측을 위해 단일의 우수한 모형을 선정하는 것은 매우 어려운 일이다. 최근에는 수문학적 과정의 복잡성으로 인해 기존 물리적 기반의 강우-유출 모형이 가지고 있는 단점들을 극복하고자 자료지향형 수위예측 모형이 널리 도입되고 있다. 본 연구의 목적은 이러한 자료 지향형 모형 중 뉴로-퍼지와 회귀분석 모형의 수위예측에 대한 성능을 비교하는 것이다. 제안된 두 모형을 한강수계의 왕숙천에 대해 적용하였다. 제안된 두 모형의 성능을 평가하기 위해 평균제곱근오차, Nash-Suttcliffe 효율계수, 평균절대오차, 수정 결정계수와 같이 4개의 통계지표들을 사용하였다. 모의결과 뉴로-퍼지 수위예측 모형이 다중선형회귀 수위예측 모형보다 좀 더 나은 예측 결과를 나타내는 것을 확인할 수 있었다. 본 연구결과는 향후 중소하천에서 충분한 선행시간을 확보한 정확도 높은 홍수정보시스템의 구축에 활용할 수 있을 것으로 판단된다.

    영어초록

    Different types of schemes have been used in stage prediction involving conceptual and physical models. Nevertheless, none of these schemes can be considered as a single superior model. To overcome disadvantages of existing physics based rainfall-runoff models for stage predicting because of the complexity of the hydrological process, recently the data-derived models has been widely adopted for predicting flood stage. The objective of this study is to evaluate model performance for stage prediction of the Neuro-Fuzzy and regression analysis stage prediction models in these data-derived methods. The proposed models are applied to the Wangsukcheon in Han river watershed. To evaluate the performance of the proposed models, fours statistical indices were used, namely; Root mean square error(RMSE), Nash Sutcliffe efficiency coefficient(NSEC), mean absolute error(MAE), adjusted
    coefficient of determination(R<sup>*²</sup>). The results show that the Neuro-Fuzzy stage prediction model can carry out the river flood stage prediction more accurately than the regression analysis stage prediction model. This study can greatly contribute to the construction of a high accuracy flood information system that secure lead time in medium
    and small streams.

    참고자료

    · 없음
  • 자료후기

      Ai 리뷰
      지식판매자가 등록한 자료는 과제에 직접 활용할 수 있는 유용한 내용이 많아, 큰 도움이 되었습니다. 앞으로도 계속 좋은 자료 부탁드립니다! 감사합니다.
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 본 학술논문은 (주)학지사와 각 학회간에 저작권계약이 체결된 것으로 AgentSoft가 제공 하고 있습니다.
        본 저작물을 불법적으로 이용시는 법적인 제재가 가해질 수 있습니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

    “한국습지학회지”의 다른 논문도 확인해 보세요!

    문서 초안을 생성해주는 EasyAI
    안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    • EasyAI 무료체험
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2025년 10월 11일 토요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    10:52 오후