총 56개
-
물리 정보화 신경망(Physics-Informed Neural Network, PINN)2025.05.101. 물리 정보화 신경망(Physics-Informed Neural Network, PINN) 물리 정보화 신경망(Physics-Informed Neural Network, PINN)은 물리학적인 지식을 신경망 구조에 통합하여 과학적 모델링 및 예측에 사용되는 기술입니다. 이 방법은 데이터 기반 기계 학습과 물리학적 모델링을 결합하여 주어진 물리적 시스템에 대한 효율적인 모델링을 수행할 수 있습니다. PINN은 물리학적 법칙과 제약 조건을 신경망 아키텍처에 내재화하여 물리학적 문제를 해결하며, 제한된 데이터 세트로부터 모델을 학습하...2025.05.10
-
[연세대학교] 센서공학 - 프로젝트 보고서 (LSTM)2025.01.151. 인공 지능 인류는 오래전부터 인간처럼 생각하는 기계를 꿈꿔왔으며, 1956년 미국에서 인공 지능이라는 용어가 처음으로 등장했습니다. 최근 인공 지능이 보여준 여러 성과는 Neural network로 표현되는 Deep learning에 기인하며, 데이터로부터 유용한 정보를 자체적으로 추출할 수 있는 것이 특징입니다. 2. 센서 기술 바이올린, 기타 등 현악기의 현의 진동을 전기 신호로 바꿔주는 장치를 Pickup이라고 하며, Piezoelectric pickup과 Magnetic pickup으로 나눌 수 있습니다. 바이올린의 경...2025.01.15
-
생성형 인공 지능 입문 족보 대비 문제은행(오프라인 기말고사, 세종대)2025.01.151. 생성형 인공지능이란? 생성형 인공지능은 데이터 전처리, 모델 학습, 결과 생성으로 구성되며, GPT와 ChatGPT와 같은 모델이 대표적입니다. 생성형 인공지능은 텍스트, 이미지, 소리, 동영상 등 다양한 콘텐츠 생성에 활용되지만, 데이터 의존성, 모델 복잡성, 윤리적 문제 등의 한계가 있습니다. 이를 해결하기 위해 데이터 증강, 전이 학습, 하드웨어 개선, 효율적인 알고리즘 개발 등의 방안이 필요합니다. 2. 언어 처리 신경망 개요 RNN은 순차 데이터 처리를 위해 필요하지만, 기울기 소실 문제가 있습니다. LSTM과 GRU...2025.01.15
-
스마트 건설기술 전문교육1(스마트건설기술교육)_집체1일2025.01.171. 인공지능 인공지능은 어떠한 기술로 구성되어 있나 추론, 지각, 학습의 기술을 바탕으로 다양한 Application을 만들어 낼 수 있으며 컴퓨터에 의한 데이터 처리와 지능적 처리가 가능하다. 인공지능에는 VR, MR, AR, 전문가시스템, 신경망이론, 퍼지시스템, 자율주행자동차, 로봇, 드론 등이 있다. 2. 가상현실(VR) VR은 현실이 아닌 100% 가상 공간에서 모든 것이 이뤄지며, 현실세계와는 완벽이 차단되어 새로운 디지털 세계에서의 경험을 극대화시킨 것으로 이를 위해서는 시야를 VR에 집중하도록 제작된 헤드셋 또는 헤...2025.01.17
-
인공지능이 어떻게 사람처럼 생각할 수 있는가2025.05.081. Pavlov's Dog Experiment Pavlov의 개 실험은 동물 학습과 조건 반사에 대한 연구를 통해 일반화된 원리를 밝혀냈습니다. 이 실험은 1890년대부터 1900년대 초반에 걸쳐 진행되었으며, 현대 심리학과 행동 심리학의 중요한 기반이 되었습니다. Pavlov의 실험은 주로 개를 대상으로 이루어졌는데, 개에게 먹이를 줄 때 종소리를 울리는 등의 조건을 주고 타액 분비 반응을 관찰했습니다. 초기에는 음식을 보고 타액이 분비되는 것이 개의 자연스러운 반응이었지만, 종소리와 먹이의 연결이 지속되면서 개들은 종소리만으로...2025.05.08
-
[보고서]GAN에 대한 보고서2025.01.241. GAN GAN은 적대적 훈련을 통해서 만들어지는 모델링이다. 일반적으로 신경망은 정보를 줄이고, 정제하고, 축약하는 데 사용한다. GAN은 이러한 일반적인 신경망의 구조를 변경시켜 만든 새로운 구조의 신경망을 말한다. GAN이란 진짜와 가짜를 구별할 수 없을 정도로 정교한 가짜를 만드는 생성자를 학습하는 알고리즘이다. GAN의 구조는 생성기(Generator)와 판별기(Discriminator)로 이루어져 있으며, 두 신경망이 서로 적대적 관계로 경쟁하면서 성능이 향상된다. GAN의 훈련 과정은 복잡하며, 생성기와 판별기의 성...2025.01.24
-
AI 기반 효소 예측 기술 DeepEC 발표2025.01.031. AI 합성곱 신경망 합성곱 신경망(Convolutional Neural Network, CNN)은 시각적 영상을 분석하는 데 사용되는 다층의 피드-포워드적인 인공신경망의 한 종류입니다. CNN은 원본 이미지를 단순화, 변형, 샘플링하는 과정을 통해 효과적으로 이미지 특징을 추출할 수 있습니다. 2. 효소 예측 기술 'DeepEC' DeepEC은 4개의 EC 번호와 138만 8,606개의 단백질 서열 빅데이터를 학습한 딥러닝 기술입니다. 3개의 CNN을 주요 예측 기술로 사용하여 EC 번호를 예측하며, 예측에 실패할 경우 서열 ...2025.01.03
-
생성적 적대 신경망 (GAN)2025.05.091. 생성적 적대 신경망 (GAN) 생성적 적대 신경망(Generative Adversarial Network)은 2014년에 이안 굿펠로우와 그의 팀에 의해 처음 소개되었습니다. 이 모델은 딥러닝 분야에서 혁신적인 기술로 인정받고 있으며, 이미지 생성, 음성 합성, 자연어 처리 등 다양한 분야에서 활발하게 적용되고 있습니다. GAN은 기본적으로 생성자와 판별자라는 두 개의 신경망으로 구성되며, 서로 경쟁하며 성능을 향상시키는 특징을 갖고 있습니다. 생성자는 실제와 유사한 데이터를 생성하기 위해 노력하고, 판별자는 생성자가 생성한 ...2025.05.09
-
MATLAB 머신러닝, 딥러닝, 강화학습 예제 실습하기2025.05.161. MATLAB MATLAB은 MathWorks사에서 개발한 공학용 소프트웨어로, 행렬을 기반으로 계산, 함수나 데이터를 그림으로 그리는 기능 및 프로그래밍을 통한 알고리즘 구현 등을 제공하며, 수치계산이 필요한 과학 및 공학 분야에서 다양하게 사용되는 프로그램이다. 2. 머신러닝 머신러닝은 인공지능의 하위 분야 중 하나로, 데이터를 기반으로 컴퓨터가 스스로 학습하고 예측하는 알고리즘을 연구하고 개발하는 기술 분야이다. 알고리즘의 유형에는 지도학습, 비지도학습(자율학습), 강화학습 이렇게 크게 세가지 정도가 있다. 3. 딥러닝 딥...2025.05.16
-
두뇌의 생물학적 특징과 발달에 대한 이해2025.04.281. 두뇌의 생물학적 특징 인간의 뇌는 척수와 함께 중추신경계를 구성하며, 약 천억 개의 신경세포로 이루어져 있습니다. 뇌는 감정, 기억, 언어, 사고 등 고등한 정신 활동을 담당하며, 대뇌, 사이뇌, 소뇌, 뇌간 등의 주요 구조로 이루어져 있습니다. 각 부분은 서로 다른 기능을 수행하며, 이들의 유기적인 작용을 통해 인간의 행동과 의식이 조절됩니다. 2. 두뇌의 발달 두뇌의 발달은 신경세포의 증가가 아닌 신경망의 연결이 더 촘촘해지고 복잡해지는 과정입니다. 유아기에 다양한 자극을 받으면 필요한 신경망이 강화되고, 사용되지 않는 신...2025.04.28
