
총 453개
-
인공지능의 학습과 강한 인공지능의 등장 가능성2025.05.091. 인공지능의 학습 인공지능의 핵심적인 특징은 그것이 학습을 할 수 있다는 것이다. 인공지능의 학습은 기본적으로 수많은 예시를 통해 이루어진다. 대표적인 학습 방식으로 머신러닝(Machine Learning)이 있다. 머신러닝(또는 기계학습)은 컴퓨터를 학습시켜 스스로 규칙을 형성하도록 하는 인공지능 개발 방식이다. 즉 머신러닝은 알고리즘(Algorithm)을 만들어 내는 알고리즘으로, 머신러닝을 통해 컴퓨터가 스스로 프로그램을 작성하기 때문에 사람은 별도의 프로그램을 작성할 필요가 없다. 딥 러닝 (Deep learning)은 ...2025.05.09
-
IT와 경영정보시스템 2024년 2학기 방송통신대 중간과제물: 인공지능(AI) 학습을 위해 고안된 LLM(Large Language Model)과 LMM(Large Multimodal Model) 비교 및 Deep Learning과의 관계2025.01.261. 인공지능(AI)의 정의 1956년 미국의 수학자이자 과학자인 존 매카시가 '인공지능'이라는 용어를 처음 제안한 이후, 인공지능 연구는 지속적으로 발전해왔으며 여러 분야에서 인간의 능력을 점점 뛰어넘고 있다. 인공지능은 컴퓨터 과학과 방대한 데이터 세트를 활용하여 문제를 해결하는 기술 분야로, 머신러닝과 딥러닝이 인공지능의 하위 분야를 구성한다. 2. 인공지능의 역사 인공지능에 대한 논의는 1950년대부터 시작되었으며, 앨런 튜링, 마빈 민스키, 존 매카시 등의 선구자들이 기계의 사고 가능성을 탐구하며 인공지능 연구의 기반을 마...2025.01.26
-
4차 산업혁명과 인공지능2025.04.261. 인공지능 인공지능은 기계로부터 만들어진 지능을 의미하며, 컴퓨터와 소프트웨어, 기계를 통해 만들어진다. 인공지능에는 강 인공지능과 약 인공지능이 있는데, 강 인공지능은 인간처럼 자유로운 사고가 가능하고 프로그램에 의해 자아를 가지고 있는 반면, 약 인공지능은 자의식이 결여되어 특정 분야에 선택적으로 개발되어 생산성을 높이고 인간의 한계를 극복하기 위해 만들어진다. 또한 인공지능에는 머신러닝과 딥러닝이 있는데, 머신러닝은 다수의 사건경험을 가지고 패턴을 학습해 통계를 바탕으로 판단을 내리는 것이며, 딥러닝은 머신러닝의 발전된 형...2025.04.26
-
비즈니스 애널리틱스란 무엇인지 설명하시오2025.01.261. 비즈니스 애널리틱스의 역사와 정의 비즈니스 애널리틱스는 1950년대 경영과학에서 출발하여, 기술 발전과 함께 꾸준히 진화해 왔다. 비즈니스 애널리틱스는 데이터를 기반으로 비즈니스 문제를 해결하고 전략적 의사결정을 지원하는 일련의 프로세스를 의미한다. 이는 단순한 데이터 분석을 넘어, 데이터를 통해 미래를 예측하고 최적의 행동을 결정하는 데 중점을 둔다. 2. 비즈니스 애널리틱스 관련 용어 설명 데이터 과학, 데이터 애널리틱스, 데이터 분석, 인공지능, 머신러닝, 딥러닝 등 비즈니스 애널리틱스와 관련된 주요 용어들을 자세히 설명...2025.01.26
-
마코위츠 네트워크 리포트2025.01.281. 금융공학개론 금융공학개론의 한 학기 간 학습 과정은 금융 시장의 기본 개념으로 시작하여 점차 깊이 있는 이론들을 학습하는 것으로 확장되었습니다. 이 과정에서 먼저 금융 시장의 구조와 기능을 이해함으로써, 주식, 채권, 파생상품 등 다양한 금융 상품이 어떻게 거래되고 시장 참여자들이 어떤 역할을 하는지를 학습하였습니다. 이러한 기본 지식은 시장의 효율성과 가격 결정 메커니즘을 이해하는 데 중요한 토대가 되었습니다. 이어서, 효율적 시장 가설의 탐구를 통해 금융 시장에서 가격이 어떻게 형성되고, 시장 가격이 모든 공개된 정보를 어...2025.01.28
-
텐서플로우 딥러닝 (Tic-Tac-Toe)2025.05.051. 데이터 세트 tic-tac-toe.csv 파일에는 TL, TM, TR, ML, MM, MR, BL, BM, BR 속성과 class 속성이 포함되어 있습니다. TL, TM, TR, ML, MM, MR, BL, BM, BR 속성은 각 게임 보드의 위치를 나타내며, 값은 'x', 'o', 'b'로 표현됩니다. class 속성은 게임 결과를 나타내며, 'TRUE'는 x가 이겼음을, 'FALSE'는 x가 졌음을 의미합니다. 2. 2층 신경망 입력 층은 9D(TL, TM, TR, ML, MM, MR, BL, BM, BR)를 받습니다. 은...2025.05.05
-
[연세대학교] 석사 디펜스 발표자료 (Deep Learning 분야)2025.01.151. 차량 주행 음질 예측 이 연구에서는 딥러닝 기술을 활용하여 차량 주행 음질의 기계적 및 감성적 특성을 예측하는 방법을 제안하였습니다. 기계적 특성으로는 엔진 실린더 수를, 감성적 특성으로는 '럭셔리', '스포티', '파워풀'을 고려하였습니다. 분류 모델과 회귀 모델을 통해 이러한 특성들을 높은 정확도로 예측할 수 있었습니다. 특히 적은 데이터 환경에서도 효과적으로 작동할 수 있도록 데이터 증강 및 베이지안 신경망 등의 기법을 활용하였습니다. 1. 차량 주행 음질 예측 차량 주행 음질 예측은 차량 내부 음향 환경을 개선하고 운전...2025.01.15
-
형태재인의 모형 비교 및 활용 / 상향적 하향적 정보처리 방식에 의거한 사람의 형태재인 처리과정에 대한 고찰2025.01.121. 형태재인의 정의 및 어려움 형태재인이란, 감각 기관을 통하여 입력된 대상을 장기기억 속에 존재하는 기억표상과 비교 및 대조하여 정체를 확인하는 인지 과정입니다. 사람에겐 이러한 형태재인의 과정이 매우 자연스럽지만, 사실 형태재인을 실행하는 기계를 만드는 일은 쉽지 않습니다. 수용기에 들어오는 외부 자극이 때에 따라 매우 가변적이고 불안정하기 때문입니다. 2. 상향적 정보처리 이론 상향적 정보처리를 설명하는 대표적 이론으로는 형판맞추기모형, 세부특징분석모형, 원형모형 등이 있습니다. 이러한 이론들은 망막에 맺힌 2차원 시각 정보...2025.01.12
-
인공지능 ) 1. 역전파와 순전파에 대해서 설명 2. 손실함수는 어떤 특성을 갖는가 3. 옵티마이저가 무엇인지 설명 4. 위의 4가지의 연관관계를 5줄 이내로 설명2025.01.191. 역전파와 순전파 역전파와 순전파는 딥러닝, 머신러닝 등에서 학습하는 방법을 의미한다. 인공지능 모델은 필연적으로 학습을 진행하게 되는데, 이때 학습의 방향이 앞에서 뒤로 순차적으로 진행되는 학습을 순전파, 뒤에서 앞으로 학습이 진행되는 것을 역전파라고 한다. 2. 손실함수의 특성 손실함수는 학습을 위한 알고리즘이 실제와 얼마나 차이가 나는지, 오류를 판단하기 위한 함수로써 여겨진다. 학습을 기반으로 나온 데이터와 실제데이터 간의 오차를 직접적으로 계산하여 인공지능 모델의 최적화를 위한 가장 중요한 지표로써 간주한다. 3. 옵티...2025.01.19
-
챗GPT의 개념과 특징, 활용사례 및 효과, 교육적 활용 가치 및 앞으로의 전망2025.01.141. 챗GPT 챗GPT는 GPI 언어 모델을 기반으로 하는 AI 기반 챗봇으로, 딥러닝 기술을 사용하여 대화하는 형태로 인간과 유사한 응답을 생성합니다. 방대한 양의 데이터를 통해 훈련된 챗GPT는 사용자들에게 매우 인상적인 기능을 제공하고 있으며, 기존에 컴퓨터가 할 수 없다고 생각했던 일들을 해내고 있습니다. 2. AI 기반 챗봇 챗GPT는 AI 기반 챗봇으로, 딥러닝 기술을 사용하여 대화하는 형태로 인간과 유사한 응답을 생성합니다. 이러한 AI 기반 챗봇 기술은 사용자들에게 매우 인상적인 기능을 제공하고 있으며, 기존에 컴퓨터...2025.01.14