
총 240개
-
스타이렌(styrene)의 분산중합 [고분자화학실험 A+]2025.05.061. 분산 중합 분산 중합(dispersion polymerization)은 불균일계 중합의 한 종류로, 모노머, 개시제, 안정제는 용매에 녹일 수 있지만 중합된 고분자는 용매에 용해되지 않아 석출되는 원리를 이용한 것이다. 용매에 단량체, 개시제, 안정제를 용해시킨 후 온도를 높여 고분자를 성장시키면, 일정 사슬이 길어져 올리고머 상태가 되면 석출된다. 이때 올리고머들이 뭉쳐져서 입자를 형성하는 핵을 만들고, 핵의 성장을 통해 nano 또는 micro 사이즈의 입자를 만든다. 이 과정에서 핵의 입자에 안정제가 흡착되어 응집을 방지...2025.05.06
-
[고분자공학실험]유화 중합2025.05.141. 유화 중합 유화 중합은 물을 분산매체로 사용하고 유화제는 미셀을 형성하며, 물에 녹는 화합물이 개시제로 사용되고 라텍스 입자가 되는 미셀 안에서 중합이 일어나는 방법입니다. 유화 중합은 화재의 위험이 낮고 분자량을 빠르게 증가시킬 수 있는 장점이 있습니다. 본 실험에서는 아황산암모늄, 도데실황산나트륨, 스티렌을 사용하여 80°C에서 2-3시간 반응시켜 폴리스티렌 라텍스를 제조하였습니다. 2. 유화 중합의 특징 유화 중합의 특징은 다음과 같습니다. 1) 반응온도의 조절이 용이하다. 2) 중합속도와 분자량을 동시에 증대시킬 수 있...2025.05.14
-
은 나노 입자 합성 및 콜로이드 분산 형성2025.05.101. 나노 입자 합성 실험을 통해 나노 입자를 합성하고 나노 입자의 물리적·광학적 특성을 분석하였다. NaBH4와 AgNO3를 이용하여 은 나노 입자를 합성하고, 시간에 따른 색 변화와 흡수 스펙트럼을 관찰하였다. 또한 PVP를 첨가하여 나노 입자의 안정성을 높이는 실험을 진행하였다. 2. 콜로이드 분산 형성 은 나노 입자 합성 과정에서 콜로이드 분산 형성을 관찰하였다. NaBH4 농도에 따라 은 나노 입자의 안정성이 달라지는 것을 확인하였으며, PVP 첨가 여부에 따른 색 변화 차이를 관찰하였다. 이를 통해 콜로이드 분산 형성에 ...2025.05.10
-
[A+] 단국대 고분자공학실험및설계2 <용해도와 분산 -점도계와 동적 광산란법> 레포트2025.01.221. 점도 측정 실험을 통해 Brookfield 점도계로 PVP 용액의 점도를 측정하였다. 점도는 속도, 온도, 압력, 시간 등의 변수에 영향을 받으므로 실험 환경을 일정하게 유지하는 것이 중요하다. 영점을 제대로 맞추지 않으면 데이터 값이 불균일하게 나타날 수 있다. 실험 결과 PVP 농도가 증가할수록 점도가 증가하는 것을 확인할 수 있었다. 2. 용해도 파라미터 고분자의 용해도 파라미터는 고유점도 측정을 통해 구할 수 있다. 엔탈피적으로 가장 우수한 용매의 경우 고분자의 고유 점도가 최대가 된다. 실험에서는 증류수만 사용하였기 ...2025.01.22
-
MMA의 현탁 중합 A+ 보고서2025.01.171. 현탁 중합 현탁 중합(Suspension polymerization)은 단량체를 라디칼 중합시켜 고분자 화합물을 얻는 중합 방법으로, 용매 대신 물과 같은 비활성의 매질을 사용하여 중합한다. 단량체를 비활성의 매질 속에서 0.01~1mm 정도의 입자로 분산시켜 중합하면 중합반응 결과 얻어지는 고분자 화합물은 비드(bead)와 같은 입자로 된다. 현탁 중합의 장점은 중합 열의 제거와 조절이 용이하고 취급이 쉬우며 구형의 고분자를 형성할 수 있다. 단점은 반응기 단위 용적당 수율이 낮고 입자 표면에 흡착된 첨가제의 제거가 완전하지...2025.01.17
-
중공실 suspension 중합 결레2025.01.131. 현탁중합 현탁중합은 단량체와 개시제를 비활성 매질 속에서 0.01~1mm 정도의 크기로 분산시키는 중합방법입니다. 개시제가 물에 녹지 않아 모노머와 개시제가 섞여있고, 그 농도가 높아 중합도는 상대적으로 낮습니다. 장점으로는 중합열의 제거가 쉽고, 고분자 크기가 작아서 편리합니다. 하지만 연속 공정이 어려우며 단량체를 분산시켜야 하므로 계속 휘저어줘야하는 것이 필요합니다. 2. 유화중합 유화중합은 물에 녹지 않는 단량체를 물에 유화시키는 방법입니다. 중화열을 쉽게 조절할 수 있다는 장점이 있으며, 점도 조절이 쉽고 균일하게 반...2025.01.13
-
염기 촉매의 양에 따른 MSN의 크기 차이 실험2025.05.121. MSN 합성 과정 실험에서는 TEOS를 전구체로 사용하여 염기 촉매인 TEOA의 양에 따른 MSN의 크기 변화를 확인하였다. TEOA에 의해 TEOS의 말단기가 -CH2-CH3에서 si-OH로 바뀌는 가수분해 반응이 일어나면서 음전하를 띠게 된다. 이후 si-OH 그룹들이 공유결합하면서 gel 상태가 되고, 음전하를 띤 silicate들이 양전하를 띠는 계면활성제 마이셀에 달라붙으면서 MSN이 합성된다. 2. TEOA 양에 따른 MSN 크기 변화 TEOA의 양이 증가하면 pH가 높아지고 가수분해 반응이 더 활성화된다. 이에 따...2025.05.12
-
메틸메타크릴레이트(MMA)의 현탁 중합 실험 결과보고서2025.01.131. 현탁 중합 현탁 중합은 단량체를 비활성의 매질 속에서 0.01~1mm 정도 입자로 분산시켜 중합하는 방법으로, 중합반응 결과 얻어지는 고분자 화합물은 비드(bead)같은 입자로 된다. 이번 실험에서는 PMMA를 중합하기 위해 MMA를 정제하고, 개시제, 안정제, 교반속도, 단량체량, 온도 등의 요소가 현탁 중합에 미치는 영향을 살펴보았다. 2. MMA 정제 MMA 정제 과정에서 10% NaOH 용액으로 세 번 씻어주었으며, 증류수로 염기성이 나타나지 않을 때까지 세 번 더 씻어주었다. 이후 무수황산소듐으로 건조시켜 순수한 MM...2025.01.13
-
[환경공학실험] 토양 특성 및 입경 분포 분석2025.01.131. 체 분석 체 분석은 0.075 mm 체에 잔류한 흙 입자를 적용하여 시험용 체에 의한 입도 시험으로 정의할 수 있다. 이를 통해 입도를 계산할 수 있다. 2. 비중계 분석 비중계 분석은 0.075 mm 체를 통과한 흙 입자에 대해 적용하도록 한다. 흙 입자 현탁액의 밀도 측정에 의한 입도 시험으로써 2 mm 체 통과분을 대상으로 시험을 실시한다. 이를 통해 입도를 계산할 수 있다. 3. 토양 입도 분류 토양의 입도를 입경(mm)에 따라 분류할 수 있다. USDA 분류와 국가기술표준원 분류가 있으며, 입경이 큰 순서대로 자갈, ...2025.01.13
-
약제학 실습 - 과립제의 제조 (습식과립법을 이용한 아세트아미노펜의 과립 제조)2025.05.101. 과립화 공정 과립화 공정은 분말 혼합물을 응집체로 만드는 과정으로, 이를 통해 더 큰 입자들이 만들어진다. 이는 제약공정에서 입자의 양을 재현성 있게 정량 화하여 공정속도를 증가시키기 위해 사용된다. 과립화를 수행하면 입자들의 흐름성이 좋아지므로 우수한 흐름성과 혼합된 성분들의 분리방지를 얻을 수 있다. 과립화의 방법에는 건식 과립법과 습식 과립법이 있다. 건식 과립법은 분말을 과립 화하는데 액체를 사용하지 않으며, 따라서 물이나 열에 불안정한 의약품에 응용된다. 습식 과립법은 적절한 액체를 이용하여 작은 분말을 큰 덩어리로 ...2025.05.10