
총 501개
-
정보통신망4A 기계학습 Machine Learning에 관하여 조사하여 설명하고 기계학습을 위해 활용될 수 있는 정보통신 기술에 관하여 서술하시오2025.01.251. 기계학습 정의 및 필요성 기계 학습은 컴퓨터 시스템이 데이터를 분석하고 패턴을 학습하여 작업을 수행할 수 있는 능력을 갖추는 것을 의미한다. 기계 학습은 데이터 마이닝이나 기타 학습 알고리즘을 사용하여 지식을 추출하고 이를 경험기반으로 삼아 비슷한 상황의 미래 사건의 결과를 예측하는 컴퓨터 프로그램이다. 기계 학습은 대량의 데이터 처리, 복잡한 패턴 인식, 자동화된 결정, 개인화된 경험 제공, 의사 결정 지원, 지능적인 시스템 구축 등의 이유로 매우 중요하다. 2. 기계학습 장점과 문제점 기계 학습의 장점으로는 패턴 인식 및 ...2025.01.25
-
PPP 모형에 따른 '-아요/어요'에 대한 수업안 설계2025.04.301. PPP 모형 PPP 모형은 '제시(Presentation) → 연습(Practice) → 생산(Production)'의 3단계로 구성되며, 언어 학습을 습관 형성의 과정으로 보고 교사가 학습 목표가 되는 언어 항목을 제시하면 학습자들이 반복적인 연습을 통해 강화하고 정확하게 인식하는 학습 활동이다. PPP 모형은 수업 설계가 쉽고 수업 목표가 분명하여 평가가 확실하다는 장점이 있지만, 언어를 분절된 단위로 나누어 교수하고 기계적인 연습에 치중한다는 단점이 있다. 2. -아요/어요 -아요/어요는 동사나 형용사 뒤에 붙어서 말하는...2025.04.30
-
현대 컴퓨터 과학의 발전과 알고리즘의 역할2025.05.161. 컴퓨터 과학의 발전과 알고리즘의 역할 현대의 컴퓨터 과학 발전은 꾸준한 연구와 발전의 연속이라 할 수 있습니다. 특히, 알고리즘이 이러한 발전의 핵심이 되어왔다는 것이 많은 학자들의 공통된 견해입니다. 본 장에서는 'The Nature of Computation'이라는 논문을 통해 현대 컴퓨터 과학의 기원과 알고리즘의 중요성에 대하여 자세히 알아보겠습니다. 2. 자연어 처리 분야의 딥러닝 동향 최근 연구에서는 자연 언어 처리(NLP) 분야에서 딥러닝의 동향을 관찰할 수 있습니다. 이 주제에 대하여, 최근 논문 'Attentio...2025.05.16
-
경영정보시스템 ) 인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오.2025.05.161. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능은 한 가지 특정 작업을 수행하는 것을 목표로 하는 인공지능이며, 강한 인공지능은 인간의 지능과 비슷한 기능을 하는 것을 목표로 한다. 약한 인공지능은 미리 정해진 데이터와 알고리즘을 통해 최적의 결과를 만들어내는 것이 목표이지만, 강한 인공지능은 다양한 기능을 수행하고 새로운 문제를 해결하는 방법을 직접 찾는 것을 목표로 한다. 2. 기계학습의 특징 기계학습은 인공지능을 구현하는 방법 중 하나로, 빅데이터를 반복적으로 분석하여 데이터 내부의 규칙성과 패턴을 추출하고 이를 바탕...2025.05.16
-
트랜스포머 알고리즘의 개념과 적용 사례2025.01.251. 트랜스포머 알고리즘의 개념 트랜스포머 알고리즘은 주의 메커니즘을 기반으로 하는 딥러닝 모델로, 입력 데이터의 각 요소가 다른 모든 요소와의 관계를 고려하여 변환된다. 이를 통해 순차적인 처리 대신 병렬 처리가 가능하게 되어 학습 속도가 크게 향상되었다. 트랜스포머는 인코더와 디코더로 구성되어 있으며, 각 단계에서 다중 헤드 자기 주의 메커니즘을 사용한다. 이 알고리즘은 2017년 구글의 연구팀이 발표한 논문에서 처음 소개되었다. 2. 트랜스포머 알고리즘의 구조 트랜스포머 모델은 인코더와 디코더 블록으로 구성되어 있다. 인코더는...2025.01.25
-
고려대학교 객체지향프로그래밍 A+ 기말고사 치팅시트2025.05.101. 프로그래밍 언어 프로그래밍 언어는 컴퓨터가 수행할 수 있는 모든 것을 설명할 수 있어야 하며, 프로그래머가 의도한 바를 정확히 표현할 수 있어야 합니다. 튜링 기계는 무한한 테이프, 읽기/쓰기/삭제 장치, 상태 테이블을 가지고 있으며 튜링 완전하거나 튜링 동등합니다. 실제 컴퓨터는 선형 한정 레지스터 기계(거의 만족)입니다. 대부분의 언어가 튜링 완전하기 때문에 문제가 되지 않습니다. 프로그래밍 언어는 오류 방지, 사용성 등의 기준을 만족해야 합니다. 2. 프로그래밍 패러다임 프로그래밍 패러다임은 좋은 프로그래밍 언어의 기준을...2025.05.10
-
산업혁명과 비즈니스 ) 인공지능(AI) 기반 우울증 치료 로봇2025.01.211. 인공지능(AI) 기반 우울증 치료 로봇 본 보고서에서 제안하는 아이디어는 '인공지능(AI) 기반 우울증 치료 로봇'입니다. 이는 최첨단 AI 기술인 자연어 처리(NLP), 컴퓨터 비전을 통한 감정 인식, 기계 학습 알고리즘 등 4차 산업혁명 기술을 총체적으로 활용하여 우울증 환자의 심리 치료를 혁신적으로 지원하고 정신 건강 관리를 새로운 차원으로 끌어올리는 시스템입니다. 이 로봇은 환자의 얼굴 표정, 음성 톤, 제스처 등 비언어적 신호를 포착하여 정확한 감정 상태를 인식하고, 대화 내용을 NLP로 분석하여 언어적 감정 표현을 ...2025.01.21
-
입력장치와 출력장치에 대한 차이점과 음성인식장치의 특징2025.01.171. 입력장치와 출력장치의 정의 및 기능 입력장치는 사용자가 데이터를 컴퓨터에 전달하는 역할을 하며, 키보드, 마우스, 스캐너 등이 대표적인 예이다. 출력장치는 컴퓨터가 처리한 데이터를 사용자에게 전달하는 역할을 하며, 모니터, 프린터, 스피커 등이 대표적이다. 입력장치와 출력장치는 상호 보완적인 역할을 하여 사용자가 컴퓨터를 효율적으로 사용할 수 있게 한다. 2. 입력장치와 출력장치의 차이점 입력장치는 사용자가 데이터를 컴퓨터에 전달하는 역할을 하는 반면, 출력장치는 컴퓨터가 처리한 데이터를 사용자에게 전달하는 역할을 한다. 이러...2025.01.17
-
인공지능(Artificial Intelligence)에 관하여 조사하여 설명하고 인공지능을 위해 활용될 수 있는 정보통신 기술에 관하여 서술하시오2025.01.251. 인공지능의 정의와 역사 인공지능(Artificial Intelligence, AI)은 인간의 지능을 모방하여 학습하고 문제를 해결하며 결정을 내리는 컴퓨터 시스템을 의미합니다. 인공지능의 역사는 1950년대 앨런 튜링(Alan Turing)의 논문 'Computing Machinery and Intelligence'에서 시작되었으며, 1956년 다트머스 회의(Dartmouth Conference)에서 인공지능이라는 용어가 처음 사용되었습니다. 2. 인공지능의 주요 기술과 접근 방법 인공지능에는 기계 학습, 심층 학습, 자연어 ...2025.01.25
-
Covid-19 이후 4차 산업혁명 기술의 발전과 미래 산업에 미치는 영향2025.05.101. SNS 분석을 활용한 전염병 예측 캐나다의 AI 스타트업 '블루닷'은 중국 우한에서 발생한 Covid-19가 전 세계적으로 확산할 것이라는 예측을 가장 먼저 내놓았다. 이 회사는 Covid-19에 대해 2019년 12월 31일에 경보를 내렸고 질병통제예방센터(CDC)보다 1주일 빠르게, 세계보건기구(WHO)보다 10일이나 빠른 시점이었다. 전염병에 대한 추적 및 예측 시스템은 100가지 이상의 다양한 빅데이터와 전염병 확산에 대한 예측이 가능한 적절한 알고리즘이 결합하여 탄생했다. 자연어 처리 및 기계학습 등의 AI 기술을 이...2025.05.10