
총 41개
-
BET 원리와 이해2025.01.121. BET 이론 BET 이론은 1938년 Brunauer, Emmett, Teller에 의해 개발된 방법으로, 미세하게 분산된 다공성 고체의 비표면적을 측정하는 데 사용됩니다. 이 이론은 물리 흡착에 적용되며, 흡착된 분자가 다음 흡착될 분자의 흡착점이 될 수 있다는 가정을 기반으로 합니다. BET 이론은 단분자층 흡착량을 쉽게 결정할 수 있으며, 흡착열과 관련된 상수 C를 제공합니다. 이를 통해 고체 표면의 비표면적을 계산할 수 있습니다. 2. 흡착 등온선 흡착 등온선은 일정 온도에서 기체 압력에 대한 흡착량을 나타냅니다. 흡착...2025.01.12
-
메틸렌블루를 이용한 광분해속도 결정 결과 레포트(A+)2025.05.061. 메틸렌블루 광분해 속도 실험 이 실험은 메틸렌블루 용액에 TiO2 광촉매를 넣고 자외선을 조사하여 메틸렌블루가 광분해되는 과정을 관찰하고 반응속도를 측정하는 실험이다. 암조건에서 흡착 평형을 이룬 후 자외선을 조사하면 TiO2 광촉매 표면에서 생성된 활성 라디칼에 의해 메틸렌블루가 분해되는 것을 확인할 수 있었다. 실험 결과를 바탕으로 1차 반응 속도식을 도출하여 반응속도 상수를 구하였다. 1. 메틸렌블루 광분해 속도 실험 메틸렌블루 광분해 속도 실험은 환경 화학 분야에서 중요한 연구 주제 중 하나입니다. 메틸렌블루는 수용액 ...2025.05.06
-
광촉매 이용 반응속도 상수 측정2025.01.151. 광촉매 광촉매는 빛을 에너지원으로 하여 화학반응을 촉진시키는 물질을 의미한다. 빛에너지를 받으면 정공과 전자의 쌍이 생성되고 전자는 산소, 정공은 물 분자에 결합해 라디칼을 형성하여 유기물을 이산화탄소와 물로 분해시킨다. 대표적인 광촉매 물질로는 TiO2, ZnO2, ZnO, SrTiO2, CdS, GaP, InP, WO3 등이 있으며, 그 중 TiO2가 가장 널리 사용되는데 빛을 받아도 변하지 않고 촉매반응에 대한 산화물의 반도체 활성이 높으며 모든 유기물을 산화시킬 수 있는 장점이 있다. 2. 반응속도 상수 측정 반응속도 ...2025.01.15
-
나노결정 태양전지의 제작 예비2025.05.091. 반도체 태양전지 반도체 태양전지는 태양열(가시광선)의 흡수, 즉 에너지에 의해 p형 반도체에서는 정공이 발생하고, n형 반도체에서는 전자가 발생하는 반응을 이용한다. p-n 접합에 의해 발생한 정공과 전자는 반도체를 통해서 서로 이동하며 전류를 운반할 수 있게 된다. 반도체 태양전지의 경우 사용되는 재료에 따라 반도체 단결정(single crystalline) 태양전지와 반도체 다결정(polycrystalline) 태양전지로 구분할 수 있다. 단결정 태양전지는 고체의 실리콘이 모두 균일한 방향으로 배열되어 있어 20% 이상의 ...2025.05.09
-
염료를 이용한 화학적 에너지 소자 제작 실험(DSSC,DSC)2025.01.071. 염료감응 태양전지(DSSC) 이 실험은 염료를 이용하여 연료 감응형 태양전지를 제작하고 연료 감응 메커니즘을 이해하는 것을 목적으로 합니다. 태양빛이 DSSC의 투명전극을 통과하여 TiO2 표면에 흡착된 염료에 도달하면, 염료가 태양빛을 흡수하여 전자가 들뜬 상태로 전이됩니다. 이 들뜬 전자는 TiO2의 전도대로 주입되어 외부 회로를 통해 상대전극으로 이동하면서 전류가 발생합니다. 한편 전자를 잃은 염료는 전해질 내의 I-로부터 전자를 얻어 환원되고, I-는 I3-로 전환됩니다. I3-는 상대전극으로부터 전자를 얻어 다시 I-...2025.01.07
-
무기화학실험 Preparation of-Dye-Sensitized Solar Cell 결과보고서2025.01.181. 태양전지 태양전지는 태양에너지를 직접 전기 에너지로 변화시키는 반도체 소자를 말한다. 태양전지는 광기전 효과를 이용하여 빛에너지가 전기에너지로 바뀌며, 유기 태양전지와 무기 태양전지로 구분된다. 유기 태양전지는 탄소 기반의 전도성 광 흡수 유기재료를 사용하고, 무기 태양전지는 실리콘 반도체 재료로 만들어진다. 2. 염료감응형 태양전지(DSSC) DSSC는 금속산화물인 TiO₂ 표면에 특수한 염료를 흡착시키고, 흡착된 특수 염료가 태양빛을 흡수해 광전기화학적 반응을 일으키는 전지이다. DSSC는 투명 전도성 기판, 작업전극, 염...2025.01.18
-
염료를 이용한 화학적 에너지 소자 제작 실험(DSSC)2025.01.121. TiO2 페이스트 제조 TiO2 페이스트를 제조할 때 에틸렌글리콜을 첨가하는 것이 효과적이었다. 에틸렌글리콜을 페이스트에 넣은 경우와 전해질에 넣은 경우를 비교했을 때, 페이스트에 넣은 경우가 더 높은 전압을 나타냈다. 2. 염료 추출 및 특성 분석 블루베리 염료의 경우 에탄올을 첨가하여 추출하는 것이 더 효과적이었다. UV-vis 분석 결과 에탄올을 첨가한 염료가 가시광선 영역에서 더 높은 흡수를 보였다. 흑미 염료는 자외선 영역과 가시광선 영역에서 모두 높은 흡수를 나타내어 염료로 더 적합한 것으로 판단된다. 3. 태양전지...2025.01.12
-
염료를 이용한 화학적 에너지 소자 제작 실험(DSSC)2025.01.121. 염료감응 태양전지 염료감응 태양전지는 염료를 이용하여 태양광 에너지를 전기 에너지로 변환하는 기술이다. 이 실험에서는 블루베리 추출액을 염료로 사용하여 염료감응 태양전지를 제작하고 그 성능을 평가하였다. 실험에서는 TiO2 페이스트 제조, 전극 제작, 염료 추출 및 전지 조립 등의 과정을 거쳤으며, 최종적으로 전압과 전류를 측정하여 전지의 성능을 확인하였다. 2. TiO2 페이스트 TiO2 분말을 묽은 아세트산과 혼합하여 페이스트를 제조하였다. TiO2는 광촉매 역할을 하는 핵심 소재로, 페이스트 제조 시 농도와 점도 등의 특...2025.01.12
-
나노결정 태양전지의 제작 결과2025.05.091. 나노결정 태양전지 실험을 통해 제작한 나노결정 태양전지의 특성을 분석하였다. 색소를 사용한 태양전지와 실리콘 태양전지의 개로전압, 단락전류, 전류밀도, 파워밀도 등을 측정하고 효율을 계산하였다. 나노결정 태양전지의 구성 요소인 SnO2 전도성 유리판, TiO2 나노결정, 색소, 요오드 전해질, 탄소막 등의 역할을 설명하였다. 나노결정 TiO2와 색소의 적합한 특성에 대해 논의하였다. 태양전지의 효율 향상을 위한 방안을 제시하였다. 1. 나노결정 태양전지 나노결정 태양전지는 기존 실리콘 태양전지에 비해 높은 효율과 낮은 제조 비...2025.05.09
-
염료감응형 태양전지(DSSC) 실험 예비레포트2025.05.031. 염료감응형 태양전지(DSSC) 염료감응형 태양전지(DSSC)는 광민성 염료를 사용하여 빛을 포착하여 전기로 변환하는 태양광 전지의 한 종류입니다. DSSC는 기존 실리콘 태양전지와 달리 염료감응형 나노결정 티타늄 디옥사이드 전극을 사용해 햇빛을 흡수해 전기로 변환합니다. DSSC는 저렴하고 제조가 용이하며 조명이 낮은 조건에서도 효과적으로 작동할 수 있는 등 여러 장점이 있지만, 효율 및 안정성 향상을 위한 노력이 필요합니다. 2. DSSC의 원리와 과정 DSSC의 원리와 과정은 크게 7단계로 나눌 수 있습니다. 1) 태양으로...2025.05.03