총 198개
-
제어공학1 ) 라플라스 변환의 성질을 5가지 이상 서술하고 설명2025.01.241. 라플라스 변환의 선형성 성질 라플라스 변환의 선형성 성질은 두 함수의 선형 결합에 대한 라플라스 변환이 각 함수의 라플라스 변환의 선형 결합과 동일하다는 것을 의미합니다. 이 성질은 복잡한 시스템에서 여러 입력 신호가 동시에 작용할 때, 각각의 입력 신호에 대한 라플라스 변환을 구한 후 이를 결합함으로써 전체 시스템의 라플라스 변환을 쉽게 구할 수 있게 해줍니다. 이는 특히 시스템의 응답 분석이나 합성 과정에서 매우 유용합니다. 2. 라플라스 변환의 시간 이동 성질 시간 이동 성질은 함수가 시간 t에서 이동된 경우 그 라플라스...2025.01.24
-
뉴턴의 수학적 업적2025.01.201. 일반화된 이항정리의 발견 뉴턴은 영국 수학자 월리스가 1656년 발표한 양의 정수 n에 대한 곡선 y=(1-x^n)의 아랫부분 면적을 구하는 새로운 방법을 확장하여, 임의의 x값까지의 면적을 구할 수 있게 하였다. 그 결과로 만들어진 다항식의 계수들이 프랑스 수학자 파스칼이 연구한 산술삼각형의 값들과 같다는 것을 발견하였다. 뉴턴은 이러한 이항계수들을 임의의 유리수 n과 양의 정수 k에 대해 일반화하여 정의하였다. 이를 통해 임의의 유리수 n에 대한 곡선 y=(1-x^2)^n의 아랫부분 면적을 무한합의 형태로 나타낼 수 있게 ...2025.01.20
-
인하대학교 / 기계공학실험A(기공실A) / 능동진동 결과보고서2025.05.061. 진동의 요소 진동의 요소에는 공진(Resonance), 주파수(Frequency), 고유 진동수(Natural frequency), 공진 주파수(Resonance frequency) 등이 있다. 공진은 물체가 가지고 있는 특정 진동수와 동일한 진동수의 물리력이 외부에서 가해질 때 진폭과 에너지가 커지는 현상이다. 주파수는 단위 시간 동안 몇 개의 주기나 파형이 반복되었는가를 나타내는 수이며, 고유 진동수는 외력의 영향이 없는 상태에서 탄성이 있는 물체가 진동할 때의 진동수이다. 공진 주파수는 물체에 대한 고유한 진동수로 가진을...2025.05.06
-
미분법과 적분법을 우리의 생활 속에 적용한 다양한 사례들2025.05.031. 미분법의 발견과 역사 17세기 영국의 수학자 뉴턴(Newton, I., 1642~1727)은 움직이는 물체의 위치와 속도를 연구하면서 미분법을 발견하였으나 이를 발표하지 않았다. 10여 년 후 독일의 수학자 라이프니츠(Leibniz, G. W., 1646∼1716)가 곡선 위의 한 점에서의 접선을 연구하면서 미분법을 발견하여 세상에 발표하였다. 이로 인해 영국과 독일의 수학자들은 오랜 기간 동안 미분법을 누가먼저 발견하였는가에 대하여 논쟁을 하였다. 오늘날에는 뉴턴과 라이프니츠가 각각 독자적으로 미분을 발견했다고 보고, 두 수...2025.05.03
-
수학2 평가계획서(평가기준안)2025.05.021. 함수의 극한과 연속 함수의 극한과 연속에 대한 수학적 개념과 성질을 이해하고, 이를 활용하여 다양한 문제를 해결할 수 있다. 극한값, 연속성, 미분가능성 등의 개념을 이해하고 이를 실생활 문제에 적용할 수 있다. 2. 미분 미분계수, 도함수, 접선의 방정식, 함수의 증감, 극대 극소 등 미분과 관련된 개념을 이해하고 이를 활용하여 다양한 문제를 해결할 수 있다. 미분을 통해 함수의 성질을 분석하고 최적화 문제를 해결할 수 있다. 3. 적분 부정적분과 정적분의 개념을 이해하고, 이를 활용하여 도형의 넓이와 부피, 속도와 거리 등...2025.05.02
-
고등학교 수학 평가계획서2025.01.161. 다항식 다항식의 계산, 나머지정리, 인수분해의 기초 개념을 알고, 이에 대한 간단한 문제를 해결하려고 노력한다. 다항식의 계산, 나머지정리, 인수분해에 대한 간단한 문제를 해결하려고 노력한다. 2. 방정식과 부등식 복소수, 이차방정식, 이차 함수, 부등식의 기초 개념을 알고, 이에 대한 간단한 문제를 해결하려고 노력한다. 복소수, 이차방정식, 이차함수, 부등식에 대한 간단한 문제를 해결하려고 노력한다. 3. 도형의 방정식 도형의 방정식의 기초 개념을 알고, 이에 대한 간단한 문제를 해결하려고 노력한다. 도형의 방정식에 대한 간...2025.01.16
-
컴퓨터개론과제, 데이터 타입별 메모리 크기를 구한다.2025.01.181. 데이터 타입별 메모리 크기 이 프로그램은 데이터 타입별 메모리 크기를 구하는 것입니다. sizeof 함수를 사용하여 char, short, int, long, float, double 등의 데이터 타입별 메모리 크기를 바이트 단위로 출력합니다. 2. 사칙 연산 프로그램 이 프로그램은 두 개의 정수를 입력받아 사칙 연산(덧셈, 뺄셈, 곱셈, 나눗셈)의 결과를 출력합니다. scanf 함수를 사용하여 두 정수를 입력받고, printf 함수를 사용하여 연산 결과를 출력합니다. 3. 삼각형의 넓이 계산 프로그램 이 프로그램은 삼각형의 ...2025.01.18
-
파이썬으로 공학계산 따라하기 IX - 2차미분방정식(라플라스변환, solve_ivp, RK4)2024.12.311. 2차 미분방정식 풀이 2차 이상의 미분방정식을 풀어내고 그래프화 하기 위해서는 계산 과정을 구성하여 일반해 및 수치해를 풀어내는 과정에서 반드시 일정 수준 이상의 수학적 지식을 필요로 합니다. 그러나 대부분의 공학 계산에서는 3차 이상의 미분방정식의 활용이 극히 드물고 2차까지의 미분방정식 정도가 대부분이기 때문에, 복잡한 수학적 지식의 습득에 많은 노력을 할애하기 보다는 간단한 패턴을 숙지하여 반복적으로 활용하는 편이 훨씬 유용합니다. 2. Runge-Kutta (4th order) 방법 Runge-Kutta (4th ord...2024.12.31
-
수학1 세부능력 및 특기사항 예문 18개입니다. 유용하게 사용하시길 바랍니다.2025.05.141. 다항식의 나눗셈 다항식의 나눗셈에서 나머지의 차수는 나누는 수의 차수보다 낮다는 특성을 이용해서 관련된 문제를 풀고 급우들 앞에서 설명하고 이해를 잘하지 못한 급우를 위해 쉬운 문제를 제작해 설명함. 2. 여러 가지 방정식과 부등식 절댓값 기호가 하나만 들어있는 부등식, 절댓값 기호가 두 개 들어있는 부등식에 관한 문제를 풀고, 급우들 앞에서 풀이 과정을 설명함. 3. 원의 방정식 원의 중심과 직선과의 거리의 관계를 활용하여 급우들 앞에서 발표함으로써 학습 이해도가 뛰어나고 급우들의 이해를 돕는 배려 있는 행동을 보여줌. 4....2025.05.14
-
고등학교 수학 평가기준안 - 심화수학12025.01.141. 방정식과 부등식 분수방정식과 무리방정식을 풀 수 있고, 이를 활용하여 여러 가지 문제를 해결할 수 있다. 또한 삼차부등식과 사차부등식, 분수부등식과 무리부등식을 풀고 활용할 수 있다. 2. 지수함수와 로그함수 거듭제곱과 거듭제곱근의 성질을 이해하고, 지수가 유리수, 실수까지 확장될 수 있음을 이해한다. 지수법칙을 이용하여 식을 간단히 나타낼 수 있으며, 지수함수와 로그함수의 그래프와 성질을 이해하고 활용할 수 있다. 3. 삼각함수 호도법과 삼각함수의 뜻을 알고, 삼각함수의 그래프와 성질을 이해한다. 삼각함수의 덧셈정리를 이해하...2025.01.14
