
총 23개
-
데이터 모델링에 관한 소고2025.05.101. 데이터 모델링 데이터 모델링은 예를 들어 제조 공정에서 발생하는 다양한 변수와 상호작용을 이해하고 표현하기 위한 기술입니다. 이를 통해 우리는 불량 발생에 영향을 미치는 주요 변수들을 식별하고, 이러한 변수들 간의 관계를 파악할 수 있습니다. 데이터 모델링을 통해 불량 발생 원인을 정확하게 분석하고, 불량율을 예측할 수 있는 모델을 구축할 수 있습니다. 2. 문제의 단순화: 단일 변수 표현 다변수 데이터를 예를 들어, 면적, 두께 등과 같은 기본적인 물리량으로 하나의 값으로 표현함으로써, 다양한 변수 간의 복잡한 관계를 단순화...2025.05.10
-
연속확률분포에 대한 요약2025.01.151. 정규분포 정규분포는 평균 μ와 표준편차 σ로 정의되며, 종 모양의 곡선을 갖는다. 정규분포의 확률밀도함수는 f(x)= {1} over {sigma sqrt {2 pi }} (- {(x- mu ) ^{2}} over {2 sigma ^{2}} )으로 정의된다. 정규분포는 많은 자연현상에서 나타나며, 중심극한정리에 의해 중요한 역할을 한다. 정규분포는 사람의 키, 시험 점수, 측정 오류 등을 모델링하는 데 사용되며, 금융 분야에서 자산의 수익률 분포를 설명하는 데 사용된다. 2. 균등분포 균등분포는 모든 구간 내의 값이 균등...2025.01.15
-
역사상 가장 위대한 정리 - 베이즈 정리2025.05.081. 베이즈 정리 베이즈 정리는 18세기 영국의 수학자 토머스 베이즈에 의해 처음으로 발표되었으며, 그 특이한 특성과 혁신적인 접근 방식으로 오랜기간 많은 이들에게 영감을 주고 있을 뿐 아니라, 최근 새롭게 다시 폭발적으로 주목받고 있습니다. 그 이유는 바로 머신러닝과 같은 새로운 분야에서의 그 쓰임이 점차 필수적인 요소가 되어가고 있기 때문입니다. 베이지안을 활용한 머신러닝은 데이터에서 불확실성과 확률적 추론을 다루는 데 베이즈 정리를 그 기반으로 하고 있습니다. 머신러닝에 베이즈 정리가 활용됨으로써 관측된 데이터를 바탕으로 예측...2025.05.08
-
최대 우도 추정을 통한 확률 모델의 매개변수 추정2025.05.081. 최대 우도 추정(Maximum Likelihood Estimation, MLE) 최대 우도 추정은 주어진 데이터를 가장 잘 설명하는 모델의 매개변수 값을 찾는 과정으로, 우도 함수를 최대화하는 매개변수 값을 추정합니다. 이 방법은 데이터가 주어진 상황에서 가장 가능성이 높은 모델의 매개변수를 선택함으로써 최적의 예측을 수행하는데 도움을 줍니다. 2. 확률 모델링 확률 모델링은 다양한 분야에서 데이터 분석과 예측에 핵심적인 역할을 하고 있습니다. 데이터로부터 모델의 매개변수를 추정하는 과정은 모델의 정확성과 신뢰성을 높이는 데 ...2025.05.08
-
머신러닝에서의 불확실성2025.05.111. 데이터 불확실성 데이터의 일부 샘플에 레이블이 없거나 부정확한 경우, 데이터에 잡음이나 이상치가 포함되어 있거나, 데이터가 불완전한 경우 등 데이터 불확실성이 발생할 수 있습니다. 이는 모델이 정확한 예측을 하기 어렵게 만듭니다. 2. 모델 불확실성 모델이 복잡할수록 과적합될 가능성이 높아져 일반화 능력이 감소하고, 모델의 파라미터 값이 정확하게 알려지지 않는 경우 예측의 불확실성이 증가할 수 있습니다. 3. 환경 불확실성 데이터의 분포가 시간에 따라 변하거나 외부 요인이 발생하는 경우, 모델이 이러한 변동성을 정확하게 모델링...2025.05.11
-
베이즈 정리를 기반으로 한 의사결정의 합리성2025.05.141. 베이즈 정리 베이즈 정리는 확률에 대한 새로운 해석을 제공하는 방법론이다. 고전적인 확률 정의와 달리 베이즈 정리는 어떤 사건이 일어날 것이라는 합리적 기대의 척도로 확률을 해석한다. 베이지안 추론은 이전의 경험과 현재의 증거를 토대로 사건의 확률을 추론하는 통계적 방법이다. 이를 통해 코로나 자가검사 키트의 정확도와 감염자의 확률을 계산할 수 있다. 2. 확률의 정의 확률에는 다양한 정의가 있다. 고전적인 확률 정의는 사건의 발생 가능성을 전체 사건 수에 대한 유리한 사건 수의 비율로 정의한다. 이와 달리 베이즈 확률론은 확...2025.05.14
-
전문가 시스템의 제약사항2025.05.061. 지식 표현의 한계 전문가의 지식을 정확하고 효과적으로 표현하기 어려운 것이 전문가 시스템의 제약사항 중 하나입니다. 전문가의 지식은 복잡하고 추상적인 경우가 많아, 이를 표현하기 위한 지식 표현 방법이 제한적입니다. 2. 지식 취득의 어려움 전문가 시스템을 구현하기 위해서는 전문가의 지식을 수집하고 분석해야 합니다. 그러나 전문가의 지식을 수집하기 위해서는 전문가와의 인터뷰, 문서 분석 등 많은 시간과 비용이 소요됩니다. 3. 추론의 한계 전문가 시스템이 전문가와 동일한 추론을 수행하지 못한다는 것이 제약사항입니다. 전문가는 ...2025.05.06
-
베이즈데이터분석 2024년 2학기 방송통신대 기말과제물2025.01.261. 밀도함수 기댓값 추정 중요도 추출 알고리즘을 이용하여 밀도함수 f(x) = 1/C * exp(-x) * x^(2-1) * (1-x)^(3-1)의 기댓값을 추정하였다. 제안분포 g(x)를 BETA(2, 3)으로 설정하고 1000개의 샘플을 추출하여 가중치를 계산한 후 I.hat2 추정량을 사용하여 기댓값을 0.3662329로 추정하였다. 상수 C를 계산할 수 있다면 I.hat1 추정량을 사용하여 기댓값을 0.364345로 추정할 수 있다. 2. 태풍 개수 모형 분석 2011년부터 2020년까지 우리나라에 영향을 준 연도별 태풍 ...2025.01.26
-
간호통계학 과제 22025.01.171. 효소 평균 추정 연구자가 특정 집단의 효소의 평균을 추정하기 위하여 10명의 표본을 뽑아 효소값을 측정했다. 그 결과 표본평균이 45였고, 효소값은 분산이 1인 정규분포를 따른다고 할 때 95%의 신뢰구간을 추정하라. 2. 금연 프로그램 참여 임산부 비교 금연프로그램에 참여한 328명의 임산부가 하루에 핀 담배의 개수 평균은 5.2개피, 표준편차는 6.33이었다. 또 프로그램에 참여하지 않은 64명의 임산부가 하루에 핀 담배의 개수는 평균 15개피, 표준편차는 7.16이었다. 99%의 신뢰구간을 구하라. 3. 종합병원과 개인의...2025.01.17
-
빅데이터와 통계학_탐구보고서_확통(세특)2025.01.111. 빅데이터와 통계학 빅데이터는 기존의 데이터 베이스 관리도구의 데이터 수집, 저장, 관리, 분석의 역량을 넘어서는 대량의 정형 또는 비정형의 데이터 세트 및 이러한 데이터로부터 가치를 추출하고 결과를 분석하는 기술을 의미한다. 정보 통신 기술의 발달, 빅데이터에 대한 효율적인 저장 및 분석의 가능, 국가간 기술 격차 감소로 인해 빅데이터에 대한 관심이 높아지고 있다. 의료산업, 맞춤형 마케팅, 제조업 등 다양한 분야에서 빅데이터가 응용되고 있다. 따라서 빅데이터 시대에 가치를 추출하고 결과를 분석하는 분야와 밀접한 관련이 있는 ...2025.01.11