
총 38개
-
뉴턴의 수학적 업적2025.01.201. 일반화된 이항정리의 발견 뉴턴은 영국 수학자 월리스가 1656년 발표한 양의 정수 n에 대한 곡선 y=(1-x^n)의 아랫부분 면적을 구하는 새로운 방법을 확장하여, 임의의 x값까지의 면적을 구할 수 있게 하였다. 그 결과로 만들어진 다항식의 계수들이 프랑스 수학자 파스칼이 연구한 산술삼각형의 값들과 같다는 것을 발견하였다. 뉴턴은 이러한 이항계수들을 임의의 유리수 n과 양의 정수 k에 대해 일반화하여 정의하였다. 이를 통해 임의의 유리수 n에 대한 곡선 y=(1-x^2)^n의 아랫부분 면적을 무한합의 형태로 나타낼 수 있게 ...2025.01.20
-
[A 수치해석실험] 연습문제 2장 3장 (각각 두 문제씩 총 4문제)2025.04.261. 오리피스 유량계 오리피스 유량계의 유량계수(C)는 실험식 C=0.6+0.032γ^2.1-0.19γ^8+91.8γ^2.4/Re^0.75를 만족한다. 여기서 γ는 교축비(관의 지름과 오리피스 지름의 비)이고, Re는 레이놀즈 수이다. 유량계수 C=0.6이고, 레이놀즈 수가 Re=10^5일 때 초기구간 0.2<γ<0.9에서 방정식을 만족하는 교축비(γ)를 이분법을 사용하여 유효숫자 4자리까지 정확히 구하였다. 2. 뉴턴법 다음 방정식 4x^3-e^(0.5x^2)-1=0에 대하여 가장 작은 양의 근을 구하기 위해 초기값을 0.3으로 ...2025.04.26
-
사회 불평등 현상에 대한 미적분적 접근-지니계수/로렌츠곡선2025.04.291. 로렌츠 곡선 로렌츠 곡선은 하위 x%의 가구가 y%의 소득이 분배될 때의 확률 분포를 누적분포 함수의 그래프로 나타낸 것으로, 소득 분배 정도를 나타낼 때 이용한다. 로렌츠 곡선은 항상 (0,0)에서 시작해 (1,1)에서 끝나며, 절대적으로 평등한 사회의 로렌츠 곡선은 y=x의 그래프로 나타나고, 절대적으로 불평등한 사회에서는 빨간색 선과 같은 형태로 나타난다. 로렌츠 곡선과 완전균등선 y=x 사이의 면적이 불평등한 정도를 나타낸다. 2. 지니계수 지니계수는 로렌츠 곡선과 완전균형산 사이의 면적(불평등면적)을 완전균등선으로 둘...2025.04.29
-
한양대학교 수치해석 matlab 과제2025.04.261. 수치해석 이 과제는 수치해석 4장에 대한 과제로, MATLAB을 이용하여 문제를 해결하였다. 첫 번째 문제에서는 주어진 수식을 변형하여 1차식으로 만들고, 여러 시행착오 끝에 a 값에 4를 곱해주어 주어진 데이터에 더 근사한 그래프를 얻을 수 있었다. 두 번째 문제에서는 여러 형태의 함수가 합쳐진 복잡한 함수를 이용하여 그래프를 구하였고, 결정계수가 1에 가까운 비교적 정확한 그래프를 얻을 수 있었다. 전반적으로 복잡한 함수를 이용하는 것이 단일 함수를 이용하는 것보다 오차가 적고 결정계수가 1에 가까운 것을 확인할 수 있었다...2025.04.26
-
수학2 보고서(미분스펙트럼과 미분을 활용한 분광기에 대한 고찰)2025.01.151. 푸리에 변환 푸리에 변환이란 시간 영역의 함수를 주파수 영역의 함수로 변환하는 것을 말한다. 푸리에 변환은 입력함수를 주기함수 성분으로 분해했을 때 계수(coefficient)를 의미하며, 이는 각 주기함수의 강도를 나타낸다. 2. 고속 푸리에 변환 (FFT) FFT는 주파수 분석을 논할 때 빈번히 언급되는 단어로, 샘플링 중 필요한 신호만 골라내어 빠르게 연산하는 방법을 말한다. 3. 미분분광광도법 미분분광광도법은 미분스펙트럼을 이용하는 광도법으로, 정성 및 정량분석에 다양한 목적으로 사용되어 왔다. 자외부 영역에의 응용은 ...2025.01.15
-
중앙대 전기회로설계실습 예비보고서92025.05.141. RL 회로 설계 이 실습의 목적은 주어진 시정수를 갖는 RL 회로를 설계하고 이를 측정하는 방법을 설계하는 것입니다. 실습에 필요한 기본 장비 및 부품이 제시되어 있으며, 구체적인 설계 실습 계획으로 C = 10nF인 커패시터와 R을 직렬 연결하여 Cutoff frequency가 15.92kHz인 LPF를 설계하는 것이 포함되어 있습니다. 1. RL 회로 설계 RL 회로 설계는 전자 회로 설계 분야에서 매우 중요한 부분입니다. RL 회로는 저항(R)과 인덕터(L)로 구성되며, 전류와 전압의 관계를 나타내는 미분 방정식을 통해 ...2025.05.14
-
CT 스캔에서의 미적분학적 기법 적용2025.01.291. CT 스캔의 원리 CT 스캔은 X선 투과와 감지를 통해 신체 내부의 단면 이미지를 생성합니다. X선이 신체를 통과하면서 내부 구조를 파악하고, 여러 각도에서 촬영된 이미지 데이터를 사용해 신체 내부의 단면 이미지를 재구성합니다. 2. 적분의 적용 CT 스캔에서 단면 이미지를 재구성하기 위해 사용되는 대표적인 수학적 기법은 라돈 변환입니다. 라돈 변환은 함수의 적분을 통해 2차원 함수의 투영 데이터를 계산하는 방법입니다. 이를 통해 각 지점에서의 흡수 계수를 계산할 수 있습니다. 단면 이미지를 재구성하기 위해서는 라돈 변환의 역...2025.01.29
-
뉴턴의 점성법칙에 대하여 기술하시오2025.01.121. 뉴턴의 점성법칙 뉴턴의 점성법칙(Newton's law of viscosity)은 물체의 운동에 관한 기본 법칙 중 하나로, 이 법칙은 17세기에 이삭 뉴턴에 의해 처음 정리되었습니다. 뉴턴의 점성법칙은 힘과 질량, 가속도 간의 관계를 설명합니다. 뉴턴의 점성법칙은 우리가 일상에서 경험하는 운동과 관련된 법칙 중 하나입니다. 물론, 이 법칙은 물리학에서 사용되기도 하지만, 사실상 우리 주변에서 일어나는 모든 운동과 관련이 있습니다. 물체의 운동이나 상호작용을 이해하는 데 중요한 원리로 여겨지는 뉴턴의 점성법칙에 대해 자세히 알...2025.01.12
-
[부산대학교 일물실1 A+]일반물리학실험1 단조화 운동 결과보고서2025.01.171. 단조화 운동 이번 실험은 단조화 운동을 하는 물체를 관찰하고 주기에 물체의 질량 및 용수철 상수가 어떤 영향을 미치는지 관찰하는 것이 목표였습니다. 실험 1에서는 용수철 상수(k)를 훅의 법칙 F=`-kx을 통해서 구해보았고, 실험 2에서는 주기에 어떤 parameter들이 영향을 미치는지 관찰하고 훅의 법칙에서 유도된 T`=`2 pi ` sqrt {{M} over {k}}을 이용하였습니다. 초기 진폭의 경우 주기에 아무런 영향을 주지 않음을 확인하였고, 물체의 질량 증가와 용수철 상수 변화에 따른 주기 변화도 관찰할 수 있었...2025.01.17
-
수리통계학 출석수업 과제물 (2023, 만점)2025.01.241. 통계학자 로널드 A. 피셔와 칼 피어슨의 업적 로널드 A. 피셔는 피셔정확검정, 분산 분석, 최대 우도 추정, 피셔의 선형 구별 등에서 큰 기여를 하였다. 칼 피어슨은 피어슨 상관계수, 카이제곱 검정, 피어슨 분포, 피어슨 모드 왜도 등을 개발하였다. 두 통계학자 간에는 Lady Testing Tea Test, 통계 추론의 본질, 유의성 검정 등을 둘러싼 논쟁이 있었다. 2. 이항분포의 적률생성함수를 이용한 확률분포 구하기 Xi ~ B(ni, p)이고 서로 독립일 때, X1 + X2 + … + Xn의 확률분포를 이항분포의 적률...2025.01.24