
총 1,027개
-
경영정보시스템 리포트 (머신러닝, 딥러닝의 개요 및 활용)2025.01.221. 약한 인공지능과 강한 인공지능 오늘날의 과학계는 인공지능의 기준을 강한 인공지능과 약한 인공지능으로 나눈다. 강한 인공지능은 인간의 지능을 가진 컴퓨터로 스스로 일을 할 수 있고 지시를 거부할 수도 있다. 반면 약한 인공지능은 특정 영역의 문제를 해결하는 기술을 가진 인공지능으로 자아가 없기 때문에 한정적으로만 사람의 인지적 능력을 활용할 수 있다. 2. 기계 학습의 개념과 특징 기계 학습은 컴퓨터가 스스로 패턴에 따라 움직일 수 있도록 하는 기술이다. 데이터 과학자가 수많은 경우의 수 데이터를 입력하고 패턴을 식별시켜 인공지...2025.01.22
-
건국대학교 오픈소스SW프로젝트 1 머신러닝으로 해결할 수 있는 문제, 머신러닝의 세가지 요소2025.01.191. 머신러닝을 적용할 수 있는 문제 사용자의 음식 기호에 맞는 한식 추천 문제를 해결하기 위해 비지도학습의 분류를 사용할 수 있으며, 서포트벡터 머신 모델을 고려하고 있다. 또한 사용자에게 세 가지 정도의 한식을 추천하는 것을 목표로 하고 있다. 2. 머신러닝의 3가지 요소 머신러닝의 핵심 요소는 Task, Experience, Performance measure이다. Task는 머신러닝을 통해 해결하려는 문제, Experience는 실제 데이터를 바탕으로 한 학습, Performance measure는 학습을 바탕으로 생성된 모...2025.01.19
-
딥러닝의 통계적 이해 출석 수업 과제물 (2023, 만점)2025.01.241. Teachable Machine을 이용한 머신러닝 모델 구축 Teachable Machine을 활용하여 이미지를 학습시켰다. 사용한 이미지는 구글 이미지에서 '귀멸의 칼날'이라는 애니메이션의 주인공 4명의 다른 사진들을 각각 10장씩 찾은 뒤 머신러닝의 입력값으로 사용하였다. 본 머신러닝으로 실제로 가지고 있는 피규어 사진을 찍어 이 사진을 입력하면 애니메이션 캐릭터를 정확하게 분류할 수 있는지 파악하고자 하였다. 다양한 하이퍼파라미터 조정을 통해 최적의 정확도를 얻고자 하였으나, 설정에 따른 결과 비교를 대량으로 진행하여 거...2025.01.24
-
학습러닝, 머신러닝 분석 레포트2025.05.051. 학습(learning) 학습(learning)이란 데이터를 이용하여 모델(model)을 학습시키는 과정을 말합니다. 이 과정에서 모델은 입력 데이터(input)와 출력 데이터(output)의 관계를 학습하게 되는데, 이를 통해 새로운 입력 데이터가 주어졌을 때 모델은 예측 결과를 출력할 수 있게 됩니다. 2. 블랙박스(black box) 블랙박스(black box)란 모델이 내부에서 어떠한 일이 일어나는지 알 수 없는 상황을 말합니다. 따라서 모델이 학습하는 과정에서 입력 데이터와 출력 데이터만을 이용하여 내부의 동작 원리를 ...2025.05.05
-
딥러닝(Deep Learning) 기술의 활용 방안2025.05.101. 인공지능, 기계학습(Machine Learning), 딥러닝(Deep Learning)의 관계 인공지능의 영역 안에는 기계학습이 있고, 딥러닝은 기계학습의 한 분야이다. 최근 인공지능의 여러 기술 중에서도 기계학습의 딥러닝이 아주 놀랄만한 성과를 보여주고 있다. 2. 딥러닝 기술을 의료에 활용한 사례 또는 활용 방안 의료산업에서 딥러닝 기술이 적용되면서 매우 빠른 속도로 높은 정확도의 진단이 가능해지고 있다. 이를 활용하면 진단의 정확도는 높이면서도 투입되는 시간과 비용은 현저히 줄일 수 있다. 또한 개인에 최적화된 맞춤형케어...2025.05.10
-
선형회귀(Linear Regression)는 통계인가 머신 러닝인가?2025.05.081. 선형회귀 선형 회귀는 연속 값을 예측하는 데 사용되는 통계 방법입니다. 선형 회귀 모델은 두 변수 간의 관계를 설명하는 선형 방정식을 찾는 통계적 방법입니다. 선형 회귀 모델은 통계, 공학, 마케팅, 금융, 제조를 포함한 다양한 분야에서 사용됩니다. 선형 회귀는 데이터를 설명하고 미래를 예측하는 데 사용할 수 있는 가장 널리 사용되는 방법입니다. 2. 통계와 머신러닝 머신러닝의 등장으로 선형회귀는 주로 '지도 학습' 문제에서 사용됩니다. 선형회귀는 입력 변수와 출력 변수 사이의 선형적인 관계를 모델링하여 새로운 입력에 대한 출...2025.05.08
-
통계학과 머신러닝에서의 회귀 분석 목적 비교2025.04.271. 통계학에서의 회귀 분석 통계학에서의 회귀 분석은 여러 변수 사이의 경향성을 분석하는 방법으로, 한 변수의 값이 다른 변수의 값을 설명할 수 있도록 두 변수의 관계를 수식으로 표현하고 데이터로부터 추정하는 분석을 의미한다. 단순 선형 회귀 분석, 다중 선형 회귀 분석, 비선형 회귀 분석 등 다양한 방법이 있다. 2. 머신 러닝에서의 회귀 분석 머신 러닝은 인공지능의 연구 분야 중 하나로, 인간의 학습 능력과 같은 기능을 컴퓨터에서 실현하고자 하는 기술이다. 머신 러닝에서의 회귀 분석은 입력 데이터를 기반으로 예측이나 결정을 도출...2025.04.27
-
글로벌비즈니스애널리틱스1공통 비즈니스 애널리틱스란 데이터 과학 데이터 애널리틱스 데이터 분석 인공지능 머신러닝 딥러닝이 무엇인지 설명하시오2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스(Business Analytics)는 데이터를 기반으로 비즈니스 의사 결정을 지원하는 과정입니다. 기업의 경영활동의 효율성을 제고하기 위해 지원되는 비즈니스 도구로서, 과거 뿐만 아니라 현재 실시간으로 발생하는 데이터에 대하여 연속적이고 반복적인 분석을 통해 미래를 예측하는 통찰력을 제공하는데 활용 됩니다. 주로 데이터를 수집하고 분석하여 중요한 통찰력을 도출하고, 이를 통해 비즈니스 성과를 향상시키는 데 중점을 둡니다. 2. 데이터 과학 데이터 과학(data science)이란, 데이터...2025.01.26
-
플립 러닝을 통한 혁신적인 교육 방법 소개2025.01.131. 플립 러닝의 개념과 이론적 배경 플립 러닝은 학습자 중심의 교육 방법론으로, 정보의 수동적 수신에서 벗어나 학습자가 적극적으로 지식을 구성하고 응용하는 과정에 중점을 둡니다. 이 교육 분야는 기존의 교실 학습 환경을 재구성하여, 강의와 학습 활동의 전통적인 역할을 바꾸는 것을 목표로 합니다. 플립 러닝의 이론적 배경은 구성주의 학습 이론에 뿌리를 두고 있습니다. 2. 플립 러닝 선택의 이유 플립 러닝을 선택한 동기는 현대 교육이 직면한 다양한 도전에 대응할 수 있는 유연성과 효율성을 이 교육 방법이 제공하기 때문입니다. 플립 ...2025.01.13
-
교육방법 및 공학-플립러닝 보고서2025.01.141. 플립 러닝 플립 러닝은 기존의 교사 중심 수업이 아닌 학생 중심 수업 방식으로, 학생들이 사전에 제공된 자료(논문, 영상, 기사 등)를 학습하고 수업 시간에는 토론, 과제 해결 등의 활동을 하는 방식입니다. 이를 통해 학생의 학습 수준을 고려한 개별화 수업이 가능하고, 학생의 수업 참여도와 이해도, 성적 향상 등의 효과를 기대할 수 있습니다. 하지만 학생들의 수업 참여 부족, 교사의 수업 준비 부담, 수줍음이 많은 학생들의 어려움 등의 문제점도 있을 수 있습니다. 2. 국어 교과에서의 플립 러닝 활용 국어 교과에서는 말하기, ...2025.01.14