총 451개
-
푸아송 분포와 매클로린 급수를 이용한 확률 분석2025.11.161. 푸아송 분포 푸아송 분포는 프랑스 수학자 시메옹 드니 푸아송이 고안한 확률분포로, 단위시간 동안 어떤 사건이 발생하는 횟수를 나타낸다. n이 충분히 크고 p가 충분히 작아서 np=λ일 때 이항분포의 값을 근사적으로 구할 수 있다. 확률질량함수는 f(x;λ)=λ^x·e^(-λ)/x!로 표현되며, 팩토리얼 사용이 적어 계산이 간편하다는 특징이 있다. 2. 기하분포 기하분포는 최초의 성공이 나올 때까지 시도한 횟수를 확률변수로 갖는 확률분포이다. x번에 성공했다면 x-1번 실패 후 1번 성공한 것이므로 확률은 p(1-p)^(x-1)...2025.11.16
-
고등학교 미적분 과목별 세부능력 및 특기 사항(과세특) 예시2025.01.171. 등비수열 기하학적 대상이 일정한 비율로 작아지는 반복되는 패턴을 나타내고 있을 때, 이 패턴이 등비수열임을 파악한 후 등비급수의 성질을 이용하여 대상들의 합을 구함. 등비수열의 수렴, 발산을 판별하는 수업에 흥미를 보이고 모둠활동에 참여하여 등비수열의 수렴 발산을 추측해 봄. 등비수열의 수렴, 발산 조건을 이해한 후 간단한 형태의 등비수열의 수렴, 발산을 판정하는 데 성공함. 등비수열의 극한값 구하기 수업에서 등비수열을 포함하는 다양한 수열들의 수렴 발산을 조사하고 극한값을 구하는 활동에 적극적으로 참여함. 등비수열의 공비가 ...2025.01.17
-
취업률 100퍼센트인 기계공학과 지원 맞춤형 생활기록부 기재 예시2025.01.091. 국어 세특 기재 예시 학생은 '책 속에서 꿈길 찾기' 활동에서 자신의 진로와 관련된 도서를 읽고 독서일지를 작성하며 자신의 진로에 대해 깊이 고민하였습니다. 또한 구술 평가에서 자신의 진로 분야에 대한 관심과 흥미를 드러냈습니다. '책 속에서 인권 찾기' 활동에서는 학생 인권 침해 사례를 소개하고 고찰하며 교육이 학생의 자발성에 기반을 두어야 한다는 자신의 견해를 피력하였습니다. 이를 통해 학생의 뛰어난 통찰력과 문제해결 능력을 확인할 수 있습니다. 2. 수학 세특 기재 예시 학생은 교사를 희망하는 학생으로서 다양한 방정식의 ...2025.01.09
-
건축물의 구조와 디자인 원리2025.05.161. 건축물의 구조와 디자인 원리의 역사 건축물의 구조와 디자인에 관한 연구는 고대부터 이어져온 역사가 있습니다. 이러한 분야에서 한가지 눈에 띄는 논문을 들여다보면, 깊이 있는 통찰력을 얻을 수 있습니다. 'Architectural Principles in the Age of Humanism'이라는 제목의 논문에서 저자 Rudolf Wittkower(1949)는 건축물의 구조와 디자인 원리에 대해 깊이 있는 연구를 진행하였습니다. Wittkower는 본 논문에서 건축물의 조화와 균형에 대한 중요성을 강조하였습니다. 2. 현대 건축...2025.05.16
-
분자모양과 결정구조 실험 결과보고서2025.11.111. 분자모양(분자기하학) 분자의 3차원 구조를 결정하는 요소로, 중심원자 주변의 전자쌍 배치에 따라 결정됩니다. VSEPR 이론을 이용하여 결합각과 분자의 기하학적 형태를 예측할 수 있으며, 선형, 삼각평면, 사면체, 삼각쌍뿔, 팔면체 등 다양한 형태가 존재합니다. 분자모양은 화학적 성질과 반응성에 직접적인 영향을 미칩니다. 2. 결정구조 고체 물질에서 원자, 이온, 분자가 규칙적이고 반복적으로 배열된 3차원 구조입니다. 결정구조는 이온결정, 공유결정, 금속결정, 분자결정 등으로 분류되며, 각 유형은 서로 다른 결합 방식과 물리적...2025.11.11
-
기하,생명연계 세특2025.01.271. 세포 수준의 구조적 모델링 세포 구조를 기하학적으로 모델링함으로써 세포 간 상호작용과 신호 전달 경로를 예측하고 시뮬레이션할 수 있다. 이를 통해 세포가 특정 환경에서 어떻게 반응하는지를 이해하고, 약물 전달 과정이나 세포 분화와 같은 복잡한 생물학적 과정을 재현할 수 있다. 2. 유체역학적 모델링을 통한 혈류 및 유동 현상 모사 혈관 내의 혈류나 조직 내에서의 물질 이동과 같은 유동 현상을 기하학적으로 모델링하여 시뮬레이션할 수 있다. 이는 생체 조직이나 인공 장기 개발에서 물질의 흡수와 분포를 이해하는 데 필수적이다. 3....2025.01.27
-
수학동아리 운영계획서2025.05.041. 프랙털 구조 프랙털은 자기 유사성을 가지는 기하학적 구조로, 일상생활에서 다양한 형태로 나타납니다. 프랙털 구조는 자연계에서 발견되는 나뭇가지, 번개, 강줄기 등에서 찾아볼 수 있으며, 이를 이해하면 자연 현상을 보다 깊이 이해할 수 있습니다. 2. 기초감염재생산수 R0 기초감염재생산수 R0는 감염병 확산을 예측하는 중요한 지표입니다. R0가 1보다 크면 감염병이 확산되고, 1보다 작으면 감염병이 줄어듭니다. 코로나19 팬데믹 상황에서 R0를 이해하는 것은 감염병 예방과 대응에 필수적입니다. 3. 경우의 수 경우의 수는 수학의...2025.05.04
-
복소평면에 나타낼 수 있는 허수2025.01.021. 허수 허수는 실수가 아닌 복소수를 의미하며, 제곱하여 -1이 되는 수를 허수 단위라고 한다. 허수는 이탈리아 수학자 카르다노에 의해 처음 발견되었다. 복소수는 실수축 x와 허수축 y로 이루어진 복소평면에 나타낼 수 있으며, 오일러는 복소수에 관한 공식인 오일러 공식을 만들어냈다. 2. 복소평면 실수를 좌표평면에 나타낼 수 있듯이, 복소수 또한 실수축 x와 허수축 y로 이루어진 복소평면에 나타낼 수 있다. 복소수와 평면 위의 점 사이에는 일대일 대응이 이루어지며, 이와 같이 복소수와의 대응이 정해진 평면을 복소평면 또는 가우스평...2025.01.02
-
힘의 평형 실험 분석 및 결과 보고2025.11.181. 힘의 벡터 합성과 분해 힘은 크기와 방향을 가지는 벡터량으로, 여러 힘이 작용할 때 벡터 합성을 통해 합력을 구할 수 있다. 본 실험에서는 세 개의 도르래에 작용하는 힘들이 평형을 이루는 조건을 분석하였으며, 코사인 제2법칙과 사인 법칙을 이용하여 이론값을 계산하였다. 질량 고정 실험에서는 FA = (mA+5)g, FB = (mB+5)g, FC = (mC+5)g로 표현되는 힘들이 FA + FB + FC = 0의 평형 조건을 만족할 때의 각도를 측정하였다. 2. 힘의 평형 조건과 응용 힘의 평형에 도달하면 물체는 등속도 운동을 ...2025.11.18
-
일반물리실험2 - 회절과 간섭 현상2025.11.171. 빛의 회절(Diffraction) 빛이 머리카락보다 가느다란 틈을 통과할 때 회절 현상이 발생하여 점선 같은 무늬가 생긴다. 이는 빛이 파동의 성질을 가지고 있기 때문에 발생하는 현상으로, 구멍이나 틈의 크기가 작을수록 회절 효과가 더 뚜렷하게 나타난다. 구멍의 크기가 클수록 회절은 구면파에서 평면파의 형태로 변하며, 일상에서 보는 큰 틈은 평면파 형태로 퍼져나가 투영된 모습이 보인다. 2. 간섭(Interference) 두 개의 가느다란 틈을 통과한 빛은 보강간섭과 상쇄간섭에 의해 밝은 무늬와 어두운 무늬가 반복되어 나타난다...2025.11.17
