
총 14개
-
인공지능의 개념과 기술 그리고 활용사례2025.01.101. 인공지능의 개념 인공지능(AI)은 인간의 지능을 기계나 컴퓨터 소프트웨어로 구현하는 기술 또는 분야를 의미합니다. 즉, 인공지능은 기계가 인간의 학습, 추론, 문제해결 등의 지능적인 기능을 수행할 수 있는 능력을 가지도록 프로그래밍하거나 학습하는 컴퓨터 과학 분야입니다. 인공지능은 크게 '약한 인공지능(weak AI)'과 '강한 인공지능(Strong AI)'으로 나뉩니다. 약한 인공지능은 특정 작업이나 한정된 범위에서 인간 수준 또는 그 이상의 성능을 발휘할 수 있는 인공지능이며, 강한 인공지능은 모든 인간 지능 활동을 수행할...2025.01.10
-
AI EXPO KOREA 2024 국제인공지능대전 참관 보고서2025.01.201. AI 기술 동향 및 전망 현재 AI 기술은 빠른 속도로 발전하고 있으며, 머신러닝, 딥러닝, 자연어 처리, 컴퓨터 비전 등 다양한 분야에서 혁신을 이루고 있다. 자율주행차, 스마트 시티, 헬스케어, 금융, 제조업 등 여러 산업에서 AI 기술이 활발히 적용되고 있으며, 데이터 분석, 예측 모델링, 자동화 등으로 업무 효율성을 극대화하고 있다. 향후 AI 기술은 더욱 정교해지고, 인간의 의사결정을 지원하며, 복잡한 문제를 해결하는 데 중요한 역할을 할 것으로 전망된다. 2. VidiGo VidiGo는 클라우드 기반 AI 영상 및 ...2025.01.20
-
기하의 원리를 이용한 공학 ( 기하 세특)2025.01.201. 컴퓨터 그래픽스 및 3D 모델링 3D 모델링과 렌더링은 기하학적 개념에 기반합니다. 물체의 모양, 크기, 위치 등을 수학적으로 표현하는 데 기하학이 사용됩니다. 이는 영화, 게임, 가상 현실(VR), 증강 현실(AR), 건축 시각화 등에 응용됩니다. 기하학의 원리로는 메시(mesh) 생성, 변환 행렬, 광원 및 음영 처리 등이 있습니다. 2. 기계 설계 및 CAD (Computer-Aided Design) CAD 소프트웨어는 기하학적 도형을 사용하여 기계 부품, 제품, 건축 구조 등을 설계합니다. 기하학은 제품의 형태, 조립 ...2025.01.20
-
소프트웨어개발실무 ) 논문 내용 정리 - Going deeper with convolution2025.04.281. GoogLeNet GoogLeNet은 22개의 계층으로 이루어진 깊은 네트워크로, 분류와 검출 부문에 출하되었다. GoogLeNet의 매개변수는 최고의 정확도를 보이며, 2년 전 ILSVRC 14 대회에서 우승한 Krizhevsky의 아키텍처보다 12배나 적게 매개변수를 이용하였지만, 훨씬 향상된 정확도를 보인다. GoogLeNet은 효율을 극대화한 DNN 아키텍처로, 인셉션이라는 코드 이름의 컴퓨터 비전을 위한 것이다. 인셉션 모듈의 형식을 취하며 새로운 조직 level을 소개하고, 네트워크의 깊어진 깊이를 제시한다. 2. ...2025.04.28
-
인공지능(Artificial Intelligence)에 관하여 조사하여 설명하고 인공지능을 위해 활용될 수 있는 정보통신 기술에 관하여 서술하시오2025.01.251. 인공지능의 정의와 역사 인공지능(Artificial Intelligence, AI)은 인간의 지능을 모방하여 학습하고 문제를 해결하며 결정을 내리는 컴퓨터 시스템을 의미합니다. 인공지능의 역사는 1950년대 앨런 튜링(Alan Turing)의 논문 'Computing Machinery and Intelligence'에서 시작되었으며, 1956년 다트머스 회의(Dartmouth Conference)에서 인공지능이라는 용어가 처음 사용되었습니다. 2. 인공지능의 주요 기술과 접근 방법 인공지능에는 기계 학습, 심층 학습, 자연어 ...2025.01.25
-
정보통신망4A 기계학습 Machine Learning에 관하여 조사하여 설명하고 기계학습을 위해 활용될 수 있는 정보통신 기술에 관하여 서술하시오2025.01.251. 기계학습 정의 및 필요성 기계 학습은 컴퓨터 시스템이 데이터를 분석하고 패턴을 학습하여 작업을 수행할 수 있는 능력을 갖추는 것을 의미한다. 기계 학습은 데이터 마이닝이나 기타 학습 알고리즘을 사용하여 지식을 추출하고 이를 경험기반으로 삼아 비슷한 상황의 미래 사건의 결과를 예측하는 컴퓨터 프로그램이다. 기계 학습은 대량의 데이터 처리, 복잡한 패턴 인식, 자동화된 결정, 개인화된 경험 제공, 의사 결정 지원, 지능적인 시스템 구축 등의 이유로 매우 중요하다. 2. 기계학습 장점과 문제점 기계 학습의 장점으로는 패턴 인식 및 ...2025.01.25
-
[학과 소개] 빅데이터학과 및 정보보안학과2025.05.101. 빅데이터학과 빅데이터학과는 4차 산업혁명을 선도하는 핵심 SW 기술인 인공지능, 기계학습, 딥러닝, 컴퓨터 비전에서의 데이터 수집·처리·가공·검색·학습 등의 데이터 과학에 대한 최신 지식을 습득하는 것을 목표로 하고 있습니다. 또한 컴퓨터과학 분야의 필수 전공지식을 바탕으로 정보통신 산업 전 분야에서의 데이터(수치 데이터뿐 아니라 문자와 영상 데이터를 포함하는 대규모 데이터)를 처리할 수 있는 인력을 양성합니다. 2. 정보보안학과 정보보안학과는 사물인터넷 시대에 사물 간 신호와 소통이 인터넷을 통해 이루어지면서 중요해진 보안 ...2025.05.10
-
AI 기반 컴퓨터 비전 기술을 활용한 의료 서비스 평준화2025.01.021. AI 기반 컴퓨터 비전 기술의 의료 적용 고령화 사회에서 건강과 의료에 대한 관심이 높아지고 있지만, 실질적으로 양질의 의료 서비스를 받기 위해서는 특정 병원에 대한 의존도가 높아지고 있습니다. 이에 컴퓨터 비전 기술을 활용하여 지역과 관계없이 동일한 진료 기준으로 질환을 판정할 수 있는 시스템을 구축하여 모두가 평등한 의료 서비스를 받을 수 있는 환경을 만드는 것이 필요합니다. 1. AI 기반 컴퓨터 비전 기술의 의료 적용 AI 기반 컴퓨터 비전 기술은 의료 분야에서 매우 유망한 기술로 주목받고 있습니다. 이 기술은 의료 영...2025.01.02
-
R-CNN 영상 이미지 인식을 이용한 차량간 거리 추정 및 충돌방지2025.05.091. 객체 인식 (Object detection) 이미지에서 객체를 찾고 분류하는 프로세스. MATLAB 딥러닝 기법 중 'R-CNN Object Detector'를 이용하여 영상 이미지 인식 방법을 사용한다. 2. R-CNN: Regions with Convolutional Neural Networks R-CNN 프로세스는 Windows 10, MATLAB 2018b, NVIDIA CUDA Tool kit v10.0, NVIDIA GeForce GTX 750 Ti 개발환경에서 진행되었다. 3. 딥러닝 학습 과정 imageDatas...2025.05.09
-
한국공학대학교(한국산업기술대학교) 컴퓨터공학과 족보 영상처리2025.01.141. 디지털 영상처리 디지털 영상처리란 디지털 이미지 신호를 처리하는 기술입니다. 영상 신호를 처리하는 영역에는 화질 개선, 객체 검출 및 추적, 영상 압축 등이 있으며 이러한 기술들은 다양한 분야에 활용됩니다. 2. 컨벌루션 컨벌루션은 입력 이미지에 마스크를 적용하여 새로운 이미지를 생성하는 기술입니다. 평균 마스크를 이용한 컨벌루션을 통해 이미지의 블러링 효과를 줄 수 있습니다. 3. 히스토그램 평활화 히스토그램 평활화는 이미지의 명암 분포를 균일하게 만들어 대비를 향상시키는 기술입니다. 이를 통해 이미지의 가시성을 높일 수 있...2025.01.14