
총 17개
-
[인공지능의세계 A+] 기말고사 문제풀이 객관식 + 서술형 + 단답형 문제+해설2025.05.101. 기계학습 기계학습은 인간의 학습능력을 기계나 컴퓨터에서 구현한 것으로, 지도학습과 비지도학습으로 구분할 수 있다. 지도학습은 학습 데이터의 정답이 주어지는 반면, 비지도학습은 정답이 주어지지 않는다. 신경망은 자동으로 가중치를 학습하는 기계학습 방식이다. 강화학습은 보상을 통해 최적의 행동을 학습하는 방식으로, 알파고가 자체 연습 대국을 통해 좋은 수를 학습하는 데 사용되었다. 2. 클러스터링 K-Means 클러스터링은 데이터를 K개의 클러스터로 분류하는 방법이다. K-Means 클러스터링의 단점은 k의 개수를 사전에 정해야 ...2025.05.10
-
고전적 조건형성과 도구적 조건형성에 대한 이해2025.05.081. 고전적 조건형성 고전적 조건형성의 구성요소로는 무조건 자극(US), 무조건 반응(UR), 조건 자극(CS), 조건 반응(CR)이 있다. 고전적 조건형성의 과정은 1단계에서 개에게 종소리(CS)를 들려주고, 2단계에서 종소리(CS)를 울린 다음 먹기(US)를 준다. 이러한 과정을 수십차례 반복하면 3단계에서 종소리(CS)만 들려주고 먹이(US)를 주지 않아도 개가 침(UR)을 분비하는 조건 반응(CR)이 나타난다. 2. 도구적 조건형성 도구적 조건형성은 어떤 행동을 학습시키고자 할 때 그 행동이 나타났을 때 보상을 주는 것이다....2025.05.08
-
유아교육론_1. 다음은 유아교사의 역할과 자질에 대한 내용입니다. 아래 문제를 잘 읽고 답안을 작성하시오. 2. 다양한 발달이론 중 한 가지를 선택하여 관련 내용을 간단하게 요약하고, 이와 관련되어 실생활에서 접목할 수 있는 사례를 2가지 이상 들어 설명하시오. (3)2025.01.251. 유아교사의 역할 지원자의 역할이 가장 중요하다고 생각한다. 유아교사가 유아들을 관찰하고 지원하는 것은 매우 중요하다. 창의성 향상과 문제해결 능력 개발을 위해 유아교사의 지원자 역할이 필수적이다. 2. 유아교사의 자질 유아교사에게 필요한 자질로는 성찰과 학습이 중요하다. 성찰을 통해 초심을 잃지 않고 올바른 지도와 훈육을 할 수 있으며, 지속적인 학습을 통해 유아들의 변화하는 요구에 맞는 안정적이고 일관적인 교육을 제공할 수 있다. 3. 반두라 사회학습이론 반두라 사회학습이론은 인간의 행동이 외적 자극에 의해 수동적으로 결정되...2025.01.25
-
만성질환에 대한 적응적 치료 전략에서의 강화학습2025.05.111. 강화학습의 개념과 의의 강화학습은 환경과의 상호작용을 통해 최적의 의사 결정을 수행하는 방법을 학습하는 머신러닝 기법입니다. 강화학습은 만성질환 환자의 상태 변화에 적응하여 최적의 치료 전략을 개발하는데 활용됩니다. 2. 강화학습의 응용 분야 강화학습은 환자의 생체 반응과 약물 투여의 상호작용을 고려하여 최적의 약물 투여 전략을 탐색하고, 환자의 위험 요인과 생활 습관을 고려하여 개인 맞춤형 예방 전략을 개발합니다. 3. 강화학습의 장점 강화학습은 개별 환자의 특성과 응답에 따라 최적화된 치료 전략을 제시하며, 시뮬레이션을 통...2025.05.11
-
교육심리학) 조작적 조건형성의 특징과 인간관, 그리고 응용방법을 서술하시오(A+리포트)2025.05.131. 조작적 조건형성의 특징 조작적 조건형성은 교육심리학에서 중요한 개념으로서, 개인의 행동을 형성하고 조절하는 과정을 설명하는 모델이다. 조작적 조건형성의 주요 특징은 조작적 자극의 역할, 강화와 효과, 행동의 조작성, 예측성과 제어성 등이다. 이를 통해 개인의 학습과 행동을 이해하고 개선할 수 있다. 2. 조작적 조건형성의 인간관 조작적 조건형성은 인간의 본성적 욕구와 목표지향성, 학습과 적응 능력, 자기효능감과 성취감, 예측과 제어 능력 등 인간관과 깊은 연관성을 갖는다. 이러한 인간의 특성들이 조작적 조건형성의 원리와 상호작...2025.05.13
-
MATLAB 머신러닝, 딥러닝, 강화학습 예제 실습하기2025.05.161. MATLAB MATLAB은 MathWorks사에서 개발한 공학용 소프트웨어로, 행렬을 기반으로 계산, 함수나 데이터를 그림으로 그리는 기능 및 프로그래밍을 통한 알고리즘 구현 등을 제공하며, 수치계산이 필요한 과학 및 공학 분야에서 다양하게 사용되는 프로그램이다. 2. 머신러닝 머신러닝은 인공지능의 하위 분야 중 하나로, 데이터를 기반으로 컴퓨터가 스스로 학습하고 예측하는 알고리즘을 연구하고 개발하는 기술 분야이다. 알고리즘의 유형에는 지도학습, 비지도학습(자율학습), 강화학습 이렇게 크게 세가지 정도가 있다. 3. 딥러닝 딥...2025.05.16
-
고전적 조건형성 및 조작적 조건형성 관련 실험 요약 / 조건형성 원리를 교육분야에 적용할 수 있는 방법에 대한 고찰2025.01.121. 고전적 조건형성 고전적 조건형성은 동물의 본능적인 반응과 조건 자극 간의 연결을 통해 학습이 발생하는 것입니다. 즉, 동물에게 무조건 자극(US)과 함께 조건 자극(CS)을 제공함으로써, 결국 조건자극 만으로도 무조건 자극과 유사한 반응인 조건 반응(CR)을 나타내게 되는 과정을 의미합니다. 파블로브식 조건형성실험에서 개가 종소리만 들려주어도 침샘 활동(CR)을 유발하는 현상이 고전적 조건형성의 예입니다. 이러한 조건형성은 동물의 본능적 반응을 이용하여 학습을 형성할 수 있다는 점을 시사합니다. 2. 조작적 조건형성 조작적 조...2025.01.12
-
DQN과 A2C network를 활용한 CartPole 강화학습 훈련과정 및 code2025.01.131. CartPole environment OpenAI gym의 CartPole은 카트 위에 막대기가 고정되어 있고 막대기는 중력에 의해 바닥을 향해 자연적으로 기울게 되는 환경을 제공한다. CartPole의 목적은 카트를 좌, 우로 움직이며 막대기가 기울지 않고 서 있을 수 있도록 유지시켜 주는 것이 목적인데, 강화 학습 알고리즘을 이용하여 막대기를 세울 수 있는 방법을 소프트웨어 에이전트가 스스로 학습할 수 있도록 한다. 2. DQN algorithm Deep Q-Network는 state-action value Q값을 Deep...2025.01.13
-
모방학습 4단계 상세 설명 및 개인 경험 공유2025.01.291. 모방학습의 4단계 모방학습은 데이터 수집, 데이터 전처리, 정책 학습, 평가 및 개선의 4단계로 구성됩니다. 데이터 수집 단계에서는 전문가나 시범자의 작업을 기록하여 학습에 필요한 데이터를 확보합니다. 데이터 전처리 단계에서는 수집된 데이터를 정제하고 구조화하는 과정이 필요합니다. 정책 학습 단계에서는 전처리된 데이터를 바탕으로 모델이 최적의 행동 정책을 학습하게 됩니다. 마지막으로 평가 및 개선 단계에서는 학습된 모델의 성능을 평가하고, 필요에 따라 모델을 개선하는 과정이 이루어집니다. 2. 모방학습 적용 사례 및 경험 프로...2025.01.29
-
인공지능의 개념과 기술 그리고 활용사례2025.01.101. 인공지능의 개념 인공지능(AI)은 인간의 지능을 기계나 컴퓨터 소프트웨어로 구현하는 기술 또는 분야를 의미합니다. 즉, 인공지능은 기계가 인간의 학습, 추론, 문제해결 등의 지능적인 기능을 수행할 수 있는 능력을 가지도록 프로그래밍하거나 학습하는 컴퓨터 과학 분야입니다. 인공지능은 크게 '약한 인공지능(weak AI)'과 '강한 인공지능(Strong AI)'으로 나뉩니다. 약한 인공지능은 특정 작업이나 한정된 범위에서 인간 수준 또는 그 이상의 성능을 발휘할 수 있는 인공지능이며, 강한 인공지능은 모든 인간 지능 활동을 수행할...2025.01.10