
총 17개
-
장애 영유아의 자폐 범주성 장애와 교수 방법2025.01.201. 자폐 범주성 장애의 판단 기준과 증상 자폐 범주성 장애는 사회적 의사소통 및 상호작용의 부족, 행동·관심·활동의 제한적이고 반복적인 패턴이 특징이다. 사회적 측면에서 전형적이지 않은 방식으로 부모에게 달라붙고 눈 맞춤이 어려우며, 다른 사람과의 관계 형성이 어렵다. 행동 측면에서는 변화에 대한 저항감이 크고 특정 무생물에 과도한 애착을 보이거나 반복적인 행동을 한다. 2. 자폐 범주성 장애의 교수 방법 자폐 범주성 장애 학생을 위한 교수 방법으로는 장애 특성을 고려한 개별화된 교육과정 운영, 시각적 접근과 강화 방법이 있다. ...2025.01.20
-
슈퍼 마리오 - 인공지능은 어떻게 게임을 할까?2025.05.081. 데이터 기반 학습 인공지능은 슈퍼 마리오 게임 플레이 데이터를 사용하여 게임의 규칙과 패턴을 학습합니다. 이를 통해 어떤 상황에서 점프를 해야 하는지, 어떤 적과의 접촉을 피해야 하는지 등을 학습하게 됩니다. 2. 강화 학습 인공지능은 게임 플레이를 통해 보상과 벌점을 받고, 이를 통해 자동으로 학습하게 됩니다. 예를 들어 도착 지점에 도달하면 보상을 받고, 적에게 맞으면 벌점을 받는 식으로 학습하면서 게임을 플레이합니다. 3. 신경망과 패턴 인식 인공지능은 신경망 모델을 사용하여 게임 화면의 정보를 분석하고, 적의 위치, 장...2025.05.08
-
머신러닝의 3가지 학습 방법: 지도학습, 비지도 학습, 강화학습2025.01.041. 지도학습 지도학습은 입력과 출력 간의 관계를 학습하는 방식으로, 정답과 사례를 연결시켜주는 방식으로 이루어집니다. 데이터 집합을 통해 입력과 출력 간의 함수관계를 기계가 배우게 되며, 이렇게 얻어진 함수를 모델이라고 합니다. 지도학습으로 만들 수 있는 대표적인 것은 패턴 분류와 회귀분석입니다. 2. 비지도 학습 비지도학습은 입력 데이터 세트에 레이블을 달아주지 않고, 기계가 데이터를 묶을 수 있는 특징을 스스로 찾아내게 합니다. 비지도 학습은 데이터 집합 속에서 숨겨진 패턴을 배우며, 군집화를 이용해 서로 유사한 데이터를 묶습...2025.01.04
-
조작적 조건형성의 원리와 사례2025.01.151. 조작적 조건형성의 개념과 원리 조작적 조건형성은 행동과 결과 사이의 상관관계를 형성하여 원하는 행동을 학습시키는 원리이다. 이 개념은 행동을 조작하여 원하는 결과를 얻을 수 있도록 조건을 형성하는 것으로, 동물 훈련이나 교육 현장에서 활용된다. 조작적 조건형성은 '조작'과 '조건형성'의 두 가지 주요 요소로 이루어져 있다. '조작'은 특별한 행동을 유도하기 위해 자극이나 조건을 조작하는 것이고, '조건형성'은 조작된 행동과 결과 사이의 상관관계를 형성하는 것이다. 이를 통해 원하는 행동을 학습시킬 수 있다. 2. 물개를 이용한...2025.01.15
-
인공지능 머신러닝 지도학습, 비지도학습, 강화학습의 실사례2025.01.161. 지도학습(Supervised Learning) 지도학습은 입력한 데이터와 출력한 데이터를 각각 공급하여 작동하는 유형으로, 훈련을 통해 알고리즘이 입력값을 바탕으로 내용을 처리하고 모델을 수정하며 원하는 출력에 근접하는 결과물을 산출하게 됩니다. 이는 분류와 예측 문제에 유용한 학습 방법으로, 스팸 이메일 탐지 기능은 대표적인 사례입니다. 해당 모델은 '스팸 메일'과 '비스팸 메일'로 레이블이 지정된 이메일 데이터 집합을 통해 학습되며, 키워드, 발신자 정보, 이메일 구조 및 내용과 같은 특징을 사용하여 새로운 수신 이메일을 ...2025.01.16
-
강화학습을 이용한 unslotted CSMA_CA backoff 학습법2025.04.251. IEEE 802.15.4 프로토콜 IEEE 802.15.4 프로토콜은 저전력 및 저속 WSN(Wireless Sensor Network)의 특성을 달성하기 위한 프로토콜입니다. MAC계층은 unslotted, slotted 두가지의 CSMA/CA알고리즘을 지원하며, 본 논문에서는 Unslotted CSMA/CA 알고리즘을 개선하고자 합니다. 2. Unslotted CSMA/CA 알고리즘 Unslotted CSMA/CA 알고리즘은 시간동기화 없이 패킷을 전송하지만, 주변 트래픽이 혼잡해질수록 패킷 충돌확률이 높아져 PDR이 급격...2025.04.25
-
인공지능의 역사적 발전과 현재 동향2025.05.161. 인공지능 연구의 역사 인공지능 기술의 역사적 발전 과정을 살펴보며 현대에 이르기까지의 중요한 이정표와 혁신적인 발견들을 중점적으로 다룹니다. 앨런 튜링의 '컴퓨터와 지능' 논문에서 제시된 튜링 테스트는 인공지능 연구의 초기 방향을 제시했으며, 1950년대와 1960년대에는 인공지능의 기초적인 개념과 알고리즘이 개발되었습니다. 1980년대에는 신경망과 딥러닝 같은 현대 인공지능 기술의 기반이 형성되었고, 최근에는 인공지능 기술이 빠르게 발전하며 다양한 분야에서 혁신적인 변화를 가져오고 있습니다. 2. 인공지능 관련 연구 동향 딥...2025.05.16