총 1,250개
-
고급영양학 - 식품의 연소 에너지, 생리적 에너지, 에너지 밀도, 활동수준과 체중 변화에 따른 에너지요구량2025.05.161. 식품의 연소 에너지 식품의 연소 에너지는 사람을 포함한 동물이 섭취하는 음식이나 사료, 식품 등에 포함되어있는 에너지의 양을 의미합니다. 식품은 주로 단백질, 탄수화물, 지방으로 이루어져있으며 사람(동물)은 이와 같은 영양성분을 섭취함에 따라 에너지를 낼 수 있습니다. 식품에 포함된 탄수화물, 단백질, 지방의 비율에 따라 에너지가가 달라지며, 각 함유량에 따라 물리적인 연소치에 소화흡수율을 곱하고 최종적으로 그 값을 다시 더하면 식품의 연소 에너지가가 나옵니다. 식품의 연소 에너지가는 칼로리(kcal)로 표기됩니다. 2. 생리...2025.05.16
-
운동생리학: 영양소 흡수에서 수분의 필수적 역할2025.11.151. 탄수화물과 수분 수분은 탄수화물을 분해하고 대사하는 데 필수적입니다. 소화 과정에서 적절한 수분이 제공되지 않으면 탄수화물의 흡수 및 대사에 문제가 발생합니다. 운동 시 근육이 에너지를 생성하기 위해 당을 분해할 때도 충분한 수분이 필요하며, 수분과 함께 섭취한 탄수화물은 체내에서 빠르게 흡수되어 에너지로 사용됩니다. 2. 단백질과 수분 단백질을 아미노산으로 변환하는 단백질 분해 과정에는 수분이 필수적입니다. 아미노산의 이동, 흡수 및 전달도 모두 적절한 체액량과 함께 이루어져야 합니다. 수분과 함께 섭취한 단백질은 체내에서 ...2025.11.15
-
가축생리학 - 영양소의 소화와 흡수2025.01.251. 탄수화물, 단백질, 지방의 소화와 흡수 생명체가 활동을 지속하고 생명을 유지하기 위해서는 영양소 섭취가 필수적이다. 탄수화물, 단백질, 지방은 소화 과정을 거쳐 분해되고 흡수되어 생명체에 에너지와 영양을 공급한다. 탄수화물은 구강에서 아밀라아제에 의해 분해되고, 소장에서 더 작은 단당류로 분해되어 흡수된다. 단백질은 위에서 펩신에 의해 분해되고, 소장에서 트립신 등의 효소에 의해 더 작은 펩타이드와 아미노산으로 분해되어 흡수된다. 지방은 소장에서 담즙과 췌장 리파아제에 의해 분해되어 흡수된다. 2. 비타민과 미네랄의 흡수 비타...2025.01.25
-
생리학 요점정리: 호흡, 영양, 소화, 내분비2025.11.171. 호흡생리 호흡은 대기와 혈액 사이에서 산소와 이산화탄소를 교환하는 과정으로 폐환기, 외부호흡, 가스운반, 내부호흡의 4가지 기능적 과정으로 구성된다. 호흡계통은 기체교환, 항상성 유지, 방어기전, 발성, 후각 기능을 수행한다. 폐포는 기체교환의 기본 단위이며, 폐표면활성제가 폐포 확장을 돕는다. 호흡 조절은 신경성 조절과 화학적 조절로 이루어지며, PCO2가 PO2와 pH보다 환기에 더 중요한 화학적 조절인자이다. 2. 영양소와 물질대사 영양소는 탄수화물, 지방, 단백질, 비타민, 무기염류로 구성되며 신체 구성과 유지의 재료가...2025.11.17
-
소화계통 병리학 리포트2025.01.111. 소화계통의 구조와 기능 소화계는 우리 몸에서 가장 다양한 기관들로 구성되며, 안정 시 가장 많은 혈액을 받는다. 소화계는 크게 위장관과 소화부속기관으로 나뉜다. 위장관은 입에서 항문까지이며, 소화부속기관에는 치아, 혀, 담낭, 간, 췌장 등이 포함된다. 소화계의 주요 기능은 영양분 섭취와 노폐물 배출이다. 2. 소화관 벽의 미세구조 소화관 벽은 안쪽에서부터 점막층, 점막하층, 근육층, 장막층의 순서로 구성되어 있다. 점막하층에는 혈관, 림프관, 신경섬유가 많이 분포하며, 내인성 신경총인 Meissner's plexus와 Aue...2025.01.11
-
비타민 결핍의 원인: 유전 vs 환경 토론2025.11.151. 유전적 요인과 비타민 결핍 비타민 결핍은 유전적 요인에 기인할 수 있습니다. 일부 사람들은 비타민을 효과적으로 흡수하거나 대사하기 위한 필요한 효소 또는 단백질을 생산하는데 어려움을 겪을 수 있는 유전적 변이를 가지고 있습니다. 개별의 대사 속도가 개개인마다 차이가 있으며, 이것은 일부 사람들이 비타민을 빠르게 분해하거나 배출하기 때문에 부족한 상태가 될 수 있다는 것을 의미합니다. 각각의 개인은 식품 섭취량, 소화 및 흡수능력, 영양소 저장 등과 같은 생리학적 차이를 가지고 있습니다. 2. 환경적 요인과 비타민 결핍 비타민 ...2025.11.15
-
식물생리학 핵심 정리: 세포 구성과 조직2025.11.161. 세포의 화학적 구성성분 식물세포는 C, H, O, N이 96%를 차지하며, P, K, S가 3%, Ca, Fe, Mg 등 미량원소가 1%를 구성한다. 이들은 토양과 공기로부터 흡수되어 세포 대사를 통해 단순한 분자에서 복잡한 물질로 변환된다. 뿌리혹박테리아는 질소고정을 돕고, 황은 대기로부터 흡수된다. 유기화합물은 탄소골격을 가진 세포내 고분자물질로서 생물의 모든 화학반응의 기초를 이룬다. 2. 탄수화물의 분류와 기능 탄수화물은 자연계에 가장 많이 존재하는 유기화합물이며 단당류, 이당류, 다당류로 분류된다. 포도당은 생물세포의...2025.11.16
-
영양과 대사 정리본 (해부생리학)2025.01.081. 영양 영양은 인체의 성장, 재생, 유지에 필요한 화학물질을 의미합니다. 열량, 탄수화물, 섬유질, 단백질, 지질, 무기질, 비타민 등이 주요 영양소입니다. 이들은 인체에서 다양한 역할을 수행하며, 균형 잡힌 섭취가 중요합니다. 2. 탄수화물 대사 탄수화물은 세포 대사의 주요 연료원입니다. 포도당은 해당작용, 혐기성 발효, 산소호흡 등의 과정을 거쳐 ATP를 생성합니다. 또한 여분의 포도당은 글리코겐이나 지방으로 전환되어 저장됩니다. 3. 지질과 단백질 대사 지질은 에너지 저장과 세포막 구성에 중요한 역할을 합니다. 지방산은 미...2025.01.08
-
심혈관계 해부생리2025.04.291. 심혈관계 해부생리 심혈관계는 심장과 혈관으로 구성되어 있으며, 혈액을 순환시켜 신체 각 부위에 산소와 영양분을 공급하고 노폐물을 제거하는 역할을 합니다. 심장은 좌심실과 우심실로 구성되어 있으며, 혈관에는 동맥, 정맥, 모세혈관이 있습니다. 심장의 수축과 이완을 통해 혈액이 순환되며, 이 과정에서 혈압이 조절됩니다. 심혈관계의 해부학적 구조와 생리적 기능을 이해하는 것은 질병 예방과 관리에 중요합니다. 1. 심혈관계 해부생리 심혈관계 해부생리는 인체의 가장 중요한 시스템 중 하나입니다. 심장은 혈액을 순환시켜 산소와 영양분을 ...2025.04.29
-
비타민의 종류와 기능2025.01.141. 비타민 A 비타민 A는 시력 안구의 망막에서 빛을 뇌신경 전달신호로 바꿀 때 필요하며, 세포의 성장 및 발달, 점막세포의 형성과 유지에 중요한 역할을 한다. 2. 비타민 B1 비타민 B1은 탄수화물과 분지상 아미노산의 대사에 필요하며, 에너지 대사에 관여한다. 3. 비타민 B2 리보플라빈 조효소는 탄수화물, 지방, 아미노산의 대사경로에서 다양한 효소반응에 필수적이다. 4. 비타민 B3 비타민 B3는 에너지대사에 필요한 조효소로 작용하며, 혈중 지방과 피부, 신경, 소화기계 건강에 도움을 준다. 5. 비타민 B5 판토텐산은 Co...2025.01.14
