총 11개
-
고등학교 수학 평가기준안 - 심화수학22025.01.141. 부정적분 여러 가지 함수의 부정적분을 구할 수 있고, 치환적분법과 부분적분법을 이해하고 활용할 수 있다. 2. 정적분 구분구적법과 정적분의 뜻을 이해하고, 곡선으로 둘러싸인 도형의 넓이, 입체도형의 부피, 속도와 거리에 관한 문제, 평면상의 곡선의 길이를 구할 수 있다. 3. 이차곡선 포물선, 타원, 쌍곡선의 방정식을 구할 수 있고, 이차곡선과 직선의 위치 관계를 이해하여 접선의 방정식을 구할 수 있다. 4. 공간도형과 공간좌표 직선과 직선, 직선과 평면, 평면과 평면의 위치 관계에 대한 간단한 증명을 할 수 있고, 삼수선의 ...2025.01.14
-
움직이는 세계, 미적분2025.01.041. 미적분학의 역사와 발전 미적분학의 초기 아이디어는 고대 그리스와 바벨론 문화에서 기원이 되었으며, 아르키메데스, 뉴턴, 오일러, 라그랑주, 라플라스 등의 수학자들에 의해 발전되었다. 뉴턴의 미적분학은 물리학에 큰 영향을 미쳤으며, 현대 수학의 기반이 되는 중요한 분야 중 하나이다. 2. 미분과 적분의 개념 미분은 함수의 순간 변화율을 나타내는 개념으로, 함수의 도함수를 계산하여 변화율, 최댓값/최솟값, 기울기 등을 분석할 수 있다. 적분은 함수의 면적 또는 누적된 변화를 나타내는 개념으로, 부정적분을 통해 함수를 얻을 수 있다...2025.01.04
-
수학2 평가계획서(평가기준안)2025.05.021. 함수의 극한과 연속 함수의 극한과 연속에 대한 수학적 개념과 성질을 이해하고, 이를 활용하여 다양한 문제를 해결할 수 있다. 극한값, 연속성, 미분가능성 등의 개념을 이해하고 이를 실생활 문제에 적용할 수 있다. 2. 미분 미분계수, 도함수, 접선의 방정식, 함수의 증감, 극대 극소 등 미분과 관련된 개념을 이해하고 이를 활용하여 다양한 문제를 해결할 수 있다. 미분을 통해 함수의 성질을 분석하고 최적화 문제를 해결할 수 있다. 3. 적분 부정적분과 정적분의 개념을 이해하고, 이를 활용하여 도형의 넓이와 부피, 속도와 거리 등...2025.05.02
-
미적분 교수 학습 운영 계획(평가계획서)2025.01.171. 수열의 극한 수열의 수렴과 발산, 급수, 부분합, 급수의 합, 등비급수 등과 관련된 수학적 표현의 의미를 이해하고 다른 사람에게 설명할 수 있다. 적합한 공학적 도구와 수학적 모델링을 이용하여 수열의 극한에 관한 다양한 문제를 해결할 수 있다. 수열의 극한에 대한 수학적 아이디어와 개념을 탐구하고, 문제 상황을 수학적으로 분석하고 해석하여 최적의 해결 방안을 탐색할 수 있다. 2. 미분법 자연로그, 삼각함수의 덧셈정리, 매개변수, 음함수, 이계도함수, 변곡점 등과 관련된 수학적 표현의 의미를 이해하고 여러 가지 미분법과 관련된...2025.01.17
-
매력적인 생기부 만들기 - 세특 작성 꿀팁과 구체적인 예시2025.01.291. CT에 적용된 적분의 원리 병원에서 환자들이 많이 이용하는 컴퓨터 단층 촬영 장치인 CT에 적용된 적분의 원리를 탐구하고, 연구한 내용을 발표하는 과정을 진행하였음. CT 스캔에서 사용되는 적분의 원리를 이해하기 위해 CT 이미지 재구성 과정과 라돈 변환에 대해 학습하였음. 특히, CT 이미지가 여러 각도에서 촬영된 X선 데이터를 기반으로 적분을 통해 재구성되는 과정을 탐구하며, 적분이 어떻게 이미지의 각 단면을 형성하는지 분석하였음. 이를 통해 환자의 신체 내부 구조를 정확하게 시각화하는 데 적분이 필수적인 역할을 한다는 것...2025.01.29
-
라이프니츠의 수학적 업적2025.01.201. 미적분학 이론 발전 라이프니츠는 일반적인 미적분학 이론의 발전과 무한급수에 대한 연구로 가장 위대한 수학적 업적을 남겼다. 그는 접선의 기울기를 좌표계의 축에 따른 '무한히 작은' 거리의 비로 나타내고, 이를 dx, dy와 같은 기호로 표현했다. 또한 곡선 밑의 면적을 구하는 방법으로 직사각형의 합을 이용하여 근사값을 구하고, 이를 통해 적분의 개념을 발전시켰다. 그는 미분, 미분계수, 적분의 개념을 d(), dy/dx, ∫()와 같은 기호로 표기하는 방법을 개발했다. 2. 미분계수 및 적분 연산 법칙 발견 라이프니츠는 미분계...2025.01.20
-
부울대수의 규칙(교환법칙, 결합법칙, 분배법칙, 드모르강의 정리) 증명2025.01.181. 교환법칙 부울 변수 A와 B에 대해 A+B=B+A, A·B=B·A, A+A=A 등의 교환법칙이 성립함을 OR 연산자의 정의를 사용하여 증명하였다. 또한 A+A'=1의 관계도 설명하였다. 2. 결합법칙 부울 대수의 결합법칙은 덧셈과 곱셈 모두에 적용되며, (A+B)+C = A+(B+C) = A+B+C, (A·B)·C = A·(B·C) = A·B·C와 같이 연산 순서를 변경해도 결과가 동일함을 보였다. 3. 분배법칙 분배법칙은 곱셈과 덧셈 간의 관계를 정의하며, A(B+C) = AB+AC가 성립함을 설명하였다. 이를 통해 부울 함...2025.01.18
-
[생기부][생활기록부세특][수시][대입] 창의적이고 개성적인 수학 세특 기재 예시문2025.04.281. 수학 수업 참여도 이 학생은 수학 수업에 진중하고 적극적인 자세로 참여하며, 발표에도 능한 것으로 나타났습니다. 다항식의 연산, 복소수의 연산, 부등식의 영역, 이차함수와 이차방정식 등 다양한 단원에서 우수한 문제 해결 능력과 발표 능력을 보였습니다. 또한 배려심이 투철하여 수학 반장과 조장을 역임하며 친구들을 도와주는 이타적인 모습을 보였습니다. 2. 수학적 사고력 이 학생은 수학적 개념과 원리를 깊이 있게 이해하고 있으며, 다양한 방법으로 문제를 해결하는 능력이 뛰어납니다. 집합과 명제, 등차수열과 등비수열, 피보나치수열 ...2025.04.28
-
미분법과 적분법을 우리의 생활 속에 적용한 다양한 사례들2025.05.031. 미분법의 발견과 역사 17세기 영국의 수학자 뉴턴(Newton, I., 1642~1727)은 움직이는 물체의 위치와 속도를 연구하면서 미분법을 발견하였으나 이를 발표하지 않았다. 10여 년 후 독일의 수학자 라이프니츠(Leibniz, G. W., 1646∼1716)가 곡선 위의 한 점에서의 접선을 연구하면서 미분법을 발견하여 세상에 발표하였다. 이로 인해 영국과 독일의 수학자들은 오랜 기간 동안 미분법을 누가먼저 발견하였는가에 대하여 논쟁을 하였다. 오늘날에는 뉴턴과 라이프니츠가 각각 독자적으로 미분을 발견했다고 보고, 두 수...2025.05.03
-
수학 학습과 생성형 AI의 영향에 관한 보고서 및 과제 풀이2025.01.261. 생성형 AI의 수학 학습에 대한 영향 생성형 인공지능(AI)의 출현은 교육 전반에 걸쳐 혁명적인 변화를 가져오고 있으며, 특히 수학 학습 분야에서 그 영향력이 두드러지게 나타나고 있습니다. 개인적인 경험과 관찰을 토대로, 생성형 AI가 수학 학습에 미치는 긍정적인 영향과 부정적인 우려를 다각도로 분석하였습니다. 긍정적인 영향으로는 개인화된 학습 경험 제공, 즉각적인 피드백, 다양한 문제 생성, 시각화 도구 제공 등이 있습니다. 그러나 AI에 과도하게 의존하여 독립적인 문제 해결 능력, 수학적 직관력, 윤리적 문제 등이 저해될 ...2025.01.26
