
총 20개
-
30점 만점 방통대 데이터마이닝 2024-1학기2025.01.261. 데이터마이닝 방법론 데이터마이닝의 방법은 크게 모수적 모형 접근 방법과 알고리즘 접근 방법으로 나뉜다. 모수적 모형 접근법은 기존 데이터를 기반으로 모수를 추정하는 방법이며, 알고리즘 접근방법은 정해진 알고리즘에 따라 데이터를 학습하는 방법이다. 각각의 장단점이 있으며, 상황에 따라 적절한 방법을 선택해야 한다. 2. 모수적 모형 접근법 모수적 모형 접근법은 단순 선형 회귀분석, 로지스틱 회귀모형 등이 해당된다. 기본 모형 식이 존재하며, 모수를 추정하는 방식으로 결과가 복잡하지 않고 해석이 용이하다. 그러나 데이터가 가정한 ...2025.01.26
-
모수적 추정을 통한 데이터 기반 분포 모형화 2 (Python 코딩)2025.05.131. 모수적 추정 모수적 추정은 주어진 수학적 모델의 파라미터를 데이터를 이용하여 추정하는 방법으로, 데이터의 불확실성을 모델링하고 신뢰성 있는 결론을 도출하는데 유용합니다. 모수적 추정의 기본 개념과 원리를 설명하고, 이를 활용하여 실제 데이터를 분석하여 모델의 파라미터를 추정하는 예시를 제시할 것입니다. 2. 모수적 방법과 비모수적 방법 모수적 방법과 비모수적 방법은 데이터를 모델링하는 데 사용되는 접근 방식에 차이가 있습니다. 두 방법은 데이터에 대한 가정과 모델의 유연성 측면에서 서로 다릅니다. 블로그에서는 두 방법을 비교하...2025.05.13
-
데이터마이닝 ) 나무 형태를 이용한 지식 표현 사례2025.01.031. 의사결정나무 의사결정나무는 예측모형에서 가장 많이 사용되며 의사결정 규칙을 도표화하여 대상 집단을 분류하거나 예측하는 분석 방법입니다. 의사결정나무의 장점은 나무구조에 의해 모형이 표현되어 사용자의 이해가 쉽고, 유용한 예측변수나 비선형성을 자동으로 찾아낼 수 있으며, 선형성이나 정규성, 등분산성과 같은 가정을 필요로 하지 않는 비모수적인 방법이라는 것입니다. 하지만 의사결정나무 모형은 연속형 변수를 비연속적인 값으로 취급하여 분리의 경계점에서 예측오류가 큰 가능성이 있고, 선형성과 주 효과를 가지지 못한다는 단점이 있습니다....2025.01.03
-
단 3개의 데이터만 가지고 모델 추정하기 (베이지안 추정, Python source code 예제 포함)2025.05.131. 베이지안 추정 베이지안 추정은 제한된 데이터를 활용하여 미지의 모델 매개변수를 추정하는 방법입니다. 이 예제에서는 PyMC3 라이브러리를 사용하여 베이지안 모델을 정의하고, MCMC 샘플링을 통해 매개변수의 사후 분포를 추출합니다. 이를 통해 불확실성을 고려하면서도 가능한 모든 시나리오를 종합적으로 고려하여 예측의 중심 경향을 나타낼 수 있습니다. 2. PyMC3 PyMC3는 확률적 프로그래밍 라이브러리로, 베이지안 모델링과 추론을 수행할 수 있습니다. 이 예제에서는 PyMC3를 사용하여 베이지안 모델을 정의하고, MCMC 샘...2025.05.13
-
데이터 마이닝, 출석수업 과제물 (2023 1학기, 30점 만점)2025.01.251. 데이터 마이닝 기법 데이터 마이닝은 데이터에서 의미를 추출하는 기법을 의미하며, 모수적 모형 접근 방법과 알고리즘 접근 방법이 모두 활용될 수 있다. 모수적 모형 접근법은 모형을 설정하고 모수를 추정하는 방식이며, 알고리즘 접근법은 정해진 알고리즘으로 계산하여 결과를 분석하는 방식이다. 각각의 장단점이 있으며, SNS 텍스트 데이터 분석에 활용할 수 있다. 2. 로지스틱 회귀모형 적합 와인 품질 데이터에 로지스틱 회귀모형을 적합하였다. alcohol 변수만 사용한 모형, sulphates 변수만 사용한 모형, 그리고 유의미한 ...2025.01.25
-
방통대 [데이터마이닝] 2024 출석과제물 (30점 만점 인증 / 표지제외 12페이지 분량 / 코드 및 해설 포함)2025.01.251. 모수적 모형 접근법 모수적 모형 접근법은 통계를 사용하여 데이터의 특징과 의미를 해석할 수 있는 분석 모델을 만드는 전통적인 방법입니다. 주로 사용하는 모형으로는 선형 회귀분석, 로지스틱 회귀모형이 있으며 모델 내에서 a 또는 b 같은 모수를 최소제곱법 또는 최대우도추정법을 사용하여 추정합니다. 모수적 모형 접근법으로 만들어진 분석 모델은 원인과 결과에 대한 설명이 용이하다는 장점이 있지만, 분석 모델을 만드는데 사용했던 데이터가 아닌 다른 데이터를 사용할 경우 정확도가 낮아지거나 적용 자체가 불가능할 수 있다는 단점이 있습니...2025.01.25
-
베이즈데이터분석 2024년 2학기 방송통신대 기말과제물2025.01.261. 밀도함수 기댓값 추정 중요도 추출 알고리즘을 이용하여 밀도함수 f(x) = 1/C * exp(-x) * x^(2-1) * (1-x)^(3-1)의 기댓값을 추정하였다. 제안분포 g(x)를 BETA(2, 3)으로 설정하고 1000개의 샘플을 추출하여 가중치를 계산한 후 I.hat2 추정량을 사용하여 기댓값을 0.3662329로 추정하였다. 상수 C를 계산할 수 있다면 I.hat1 추정량을 사용하여 기댓값을 0.364345로 추정할 수 있다. 2. 태풍 개수 모형 분석 2011년부터 2020년까지 우리나라에 영향을 준 연도별 태풍 ...2025.01.26
-
방송통신대학교 통계데이터학과)바이오통계학 중간과제물 (30점 만점 A+)2025.01.261. 모집단, 표본, 모수, 통계량 모집단은 우리가 알고 싶은 대상 전체를 의미하며, 표본은 모집단의 일부를 실제로 관측한 것을 말한다. 모수는 모집단 전체의 특성을 나타내는 값이고, 통계량은 표본의 특성을 나타내는 값이다. 이 문제에서 모집된 만 7세 아동 100명은 표본에 해당한다. 2. 히스토그램 그리기 R 프로그래밍을 이용하여 수축기 혈압(SBP)의 분포를 나타내는 히스토그램을 그렸다. 이를 통해 데이터의 분포 특성을 시각적으로 확인할 수 있다. 3. 중앙값 구하기 R 프로그래밍을 이용하여 이 데이터에 포함된 156명 전체의...2025.01.26
-
방송통신대학교 수리통계학 출석수업 과제물 (30점 만점 A+)2025.01.261. J. Neyman(네이만)과 E.S. Pearson(이곤 피어슨)의 업적과 교류 20세기 초 일군의 통계학자들이 작은 수의 데이터를 확률모형과 연결하여 분석, 추론하기 시작하면서 현대 통계학이 형성되기 시작했고, 널리 알려져 있다시피 20세기가 시작되자마자 나온 K.Pearson(칼 피어슨), W.Gosset(고셋) 등의 연구에 이어 통계적 검정법 연구에서 큰 획을 그은 인물은 R.A.Fisher(피셔), J.Neyman(네이만), E.S.Pearson(이곤 피어슨) 등이었다. 본 과제에서는 여러 통계학자들 중 서로 교류하고 ...2025.01.26
-
사회적 배제와 삶의 만족도의 관계2025.05.031. 역코딩 문항의 의미 역코딩 문항은 부정적인 내용을 포함하고 있는 문항을 역으로 변환해야 하는 것을 의미한다. 이는 응답자가 부정 문항에 대해 긍정적으로 응답한 경우 실질적으로는 긍정 응답으로 간주되어야 함을 나타낸다. 2. 리커트 척도의 의미 리커트 5점 척도는 긍정적 응답과 부정적 응답의 양극 척도를 측정하는 방법이다. '전혀 아님'이나 '아님'은 부정적 응답, '보통'은 중립적 응답, '그러함'과 '매우 그러함'은 긍정적 응답을 의미한다. 역코딩 문항의 경우 응답 방향이 반대로 해석된다. 3. 통계 분석 방법 리커트 척도 ...2025.05.03