
총 251개
-
단 3개의 데이터만 가지고 모델 추정하기 (베이지안 추정, Python source code 예제 포함)2025.05.131. 베이지안 추정 베이지안 추정은 제한된 데이터를 활용하여 미지의 모델 매개변수를 추정하는 방법입니다. 이 예제에서는 PyMC3 라이브러리를 사용하여 베이지안 모델을 정의하고, MCMC 샘플링을 통해 매개변수의 사후 분포를 추출합니다. 이를 통해 불확실성을 고려하면서도 가능한 모든 시나리오를 종합적으로 고려하여 예측의 중심 경향을 나타낼 수 있습니다. 2. PyMC3 PyMC3는 확률적 프로그래밍 라이브러리로, 베이지안 모델링과 추론을 수행할 수 있습니다. 이 예제에서는 PyMC3를 사용하여 베이지안 모델을 정의하고, MCMC 샘...2025.05.13
-
최대 우도 추정을 통한 확률 모델의 매개변수 추정2025.05.081. 최대 우도 추정(Maximum Likelihood Estimation, MLE) 최대 우도 추정은 주어진 데이터를 가장 잘 설명하는 모델의 매개변수 값을 찾는 과정으로, 우도 함수를 최대화하는 매개변수 값을 추정합니다. 이 방법은 데이터가 주어진 상황에서 가장 가능성이 높은 모델의 매개변수를 선택함으로써 최적의 예측을 수행하는데 도움을 줍니다. 2. 확률 모델링 확률 모델링은 다양한 분야에서 데이터 분석과 예측에 핵심적인 역할을 하고 있습니다. 데이터로부터 모델의 매개변수를 추정하는 과정은 모델의 정확성과 신뢰성을 높이는 데 ...2025.05.08
-
모수적 추정을 통한 데이터 기반 분포 모형화 1 (Python 코딩)2025.05.131. 모수적 추정 모수적 추정은 데이터를 특정 함수의 파라미터로 모델링하는 방법입니다. 일반적으로 미리 정의된 수학적 모델을 사용하며, 해당 모델의 파라미터를 추정하는 것이 목표입니다. 모수적 방법은 데이터가 적을 때에도 좋은 성능을 보이지만, 데이터의 분포가 모델의 가정과 정확히 일치해야만 정확한 결과를 얻을 수 있습니다. 2. 비모수적 추정 비모수적 추정은 데이터를 특정 함수의 파라미터로 제한하지 않고, 유연한 모델링을 수행합니다. 주어진 데이터에 적합한 모델 형태를 자동으로 선택하며, 복잡한 데이터 패턴을 캡처하는 데 유용합니...2025.05.13
-
모수적 추정을 통한 데이터 기반 분포 모형화 3 (Python 코딩)2025.05.131. 모수적 추정 모수적 추정을 통해 데이터를 반영하여 분포 모델을 도출하는 과정과 그 중요성에 대해 다루고 있습니다. 기본적인 수식 y = ax + b*sin(x)에서 a와 b를 임의로 바꾼 후 단 10개의 데이터를 생성하고, 이를 바탕으로 추정을 수행합니다. MCMC 샘플링을 통해 posterior 분포를 추정하고, 이를 시각화하여 파라미터의 불확실성과 추정치의 변동성을 확인합니다. 2. 데이터 기반 모델링 주어진 데이터를 바탕으로 모수적 추정을 수행하여 모델을 도출하는 과정을 설명하고 있습니다. 10개의 데이터만을 사용하여 비...2025.05.13
-
모수적 추정을 통한 데이터 기반 분포 모형화 2 (Python 코딩)2025.05.131. 모수적 추정 모수적 추정은 주어진 수학적 모델의 파라미터를 데이터를 이용하여 추정하는 방법으로, 데이터의 불확실성을 모델링하고 신뢰성 있는 결론을 도출하는데 유용합니다. 모수적 추정의 기본 개념과 원리를 설명하고, 이를 활용하여 실제 데이터를 분석하여 모델의 파라미터를 추정하는 예시를 제시할 것입니다. 2. 모수적 방법과 비모수적 방법 모수적 방법과 비모수적 방법은 데이터를 모델링하는 데 사용되는 접근 방식에 차이가 있습니다. 두 방법은 데이터에 대한 가정과 모델의 유연성 측면에서 서로 다릅니다. 블로그에서는 두 방법을 비교하...2025.05.13
-
R-CNN 영상 이미지 인식을 이용한 차량간 거리 추정 및 충돌방지2025.05.091. 객체 인식 (Object detection) 이미지에서 객체를 찾고 분류하는 프로세스. MATLAB 딥러닝 기법 중 'R-CNN Object Detector'를 이용하여 영상 이미지 인식 방법을 사용한다. 2. R-CNN: Regions with Convolutional Neural Networks R-CNN 프로세스는 Windows 10, MATLAB 2018b, NVIDIA CUDA Tool kit v10.0, NVIDIA GeForce GTX 750 Ti 개발환경에서 진행되었다. 3. 딥러닝 학습 과정 imageDatas...2025.05.09
-
선형회귀(Linear Regression)는 통계인가 머신 러닝인가?2025.05.081. 선형회귀 선형 회귀는 연속 값을 예측하는 데 사용되는 통계 방법입니다. 선형 회귀 모델은 두 변수 간의 관계를 설명하는 선형 방정식을 찾는 통계적 방법입니다. 선형 회귀 모델은 통계, 공학, 마케팅, 금융, 제조를 포함한 다양한 분야에서 사용됩니다. 선형 회귀는 데이터를 설명하고 미래를 예측하는 데 사용할 수 있는 가장 널리 사용되는 방법입니다. 2. 통계와 머신러닝 머신러닝의 등장으로 선형회귀는 주로 '지도 학습' 문제에서 사용됩니다. 선형회귀는 입력 변수와 출력 변수 사이의 선형적인 관계를 모델링하여 새로운 입력에 대한 출...2025.05.08
-
정규 분포를 이용한 불량률 추정 22025.05.121. 정규 분포 정규 분포는 많은 자연 현상과 데이터에서 나타나는 분포를 모델링하는데 자주 사용되는 확률 분포입니다. 이 연구에서는 정규 분포를 이용하여 압력 범위에 따른 불량률의 변화를 추정하고자 합니다. 정규 분포의 평균과 표준편차를 계산하여 불량률의 분포를 모델링하고, 이를 시각화하여 압력과 불량률 사이의 관계를 이해하고자 합니다. 2. 누적 분포 함수(CDF) CDF(누적 분포 함수)는 정규 분포를 이용하여 불량률과 압력 사이의 관계를 수학적으로 모델링하는데 사용됩니다. CDF를 통해 불량률의 분포를 누적하고, 추정된 CDF...2025.05.12
-
CAPM의 기본 가정과 재무 분야에서의 활용2025.05.111. CAPM의 이론적 기초 CAPM은 자산 가격 결정의 핵심 이론으로, 투자자들이 평균-분산 효용을 최대화하고 동일한 기대 수익률과 위험 인식을 가지며 완전 경쟁 시장에서 거래한다는 가정을 바탕으로 한다. 이를 통해 시장 포트폴리오와 개별 자산 간의 수익률 관계를 나타내는 시장선 개념이 도출된다. 2. CAPM의 재무적 활용 CAPM은 주식 포트폴리오의 위험과 수익률 평가, 기업의 자본비용 계산, 주가 변동성과 위험 프리미엄 이해 등 다양한 재무 분야에서 활용된다. 이를 통해 투자자와 기업은 더 정확한 투자 의사결정을 내릴 수 있...2025.05.11
-
MCMC를 활용한 베이지안 추론 - 동전 던지기 문제의 확률 추정 (파이썬예제풀이 포함)2025.05.091. MCMC(Markov Chain Monte Carlo) MCMC는 머신러닝과 통계학 분야에서 중요한 역할을 하는 AI(인공지능) 기법 중 하나입니다. MCMC는 복잡한 확률분포를 추정하거나 샘플링하기 위해 사용되며, 특히 베이지안 추론과 관련된 문제에 유용하게 적용됩니다. MCMC는 몬테카를로(Monte Carlo) 방법과 마코프 체인(Markov Chain)을 결합한 알고리즘으로, 마코프 체인을 이용하여 탐색 공간을 효과적으로 탐색하고 샘플링을 수행합니다. 2. 동전 던지기 문제 동전 던지기 문제는 간단하면서도 직관적인 문제...2025.05.09