
유기화학실험 TLC
본 내용은
"
유기화학실험 TLC
"
의 원문 자료에서 일부 인용된 것입니다.
2023.07.17
문서 내 토픽
-
1. Thin Layer Chromatography(TLC)TLC는 비휘발성 반응물의 정성 분석에 이용되며, 빠르게 결과를 도출할 수 있고 극소량의 시료로도 detection이 가능한 액체 Chromatography로서 주로 glass에 고정상을 coating하여 사용한다. TLC plate에는 이 외에도 aluminum이 있지만 heating 시 수축할 수 있고, 적은 확률로 plastic plate를 사용하기도 하며 최근에는 상업적으로 이미 제조된 것을 구입해 실험에 사용한다. TLC를 사용하는 경우 어떠한 시료가 순수한지의 여부를 확인할 때, 최적 합성 조건의 빠른 규명, 미정제 반응물의 규명, 두 개 이상의 시료가 얼마나 비슷한지 혹은 동일한지에 대한 규명(10 g의 양까지 정성 분석)이 가능하다.
-
2. TLC의 여섯 단계TLC의 여섯 단계는 sample preparation, TLC plate spotting, solvent 고르기, TLC plate develop, TLC plate 결과 visulization, Rf계산이다. sample preparation에서는 모든 sample은 고체이던지 액체이던지 용매에 섞는다. TLC plate spotting에서는 spot이 길게 늘어지면 좋은 spot이 아니다. solvent 고르기에서는 분리하려는 성분이 어떤 극성을 띠는가에 따라 용매를 다르게 써야 한다. TLC plate develop에서는 Sample이 퍼져버릴 수 있으므로 solvent의 깊이는 starting line보다 낮아야 한다. TLC plate 결과 visulization에서는 uv 활성기가 있는 화합물은 uv lamp를 이용하여 발색하는 부분과 아닌 부분을 확인할 수 있다. Rf계산에서는 spot이 이동한 거리와 eluent가 이동한 거리의 비로 화합물과 용리액에 무엇인가에 따라 값이 달라진다.
-
3. TLC 모니터링TLC 모니터링에서는 starting line에 capillary tube로 reactant A, reactant B, product A+B, co-spot(RA, RB, PA+B를 모두 찍는다)을 찍어주면, co-spot을 통해 reactant와 product가 같은 위치인지 확인 가능하다. 즉 co-spot에서 왼쪽과 같은 위치에 spot이 나타나는지 아닌지를 통해 각 spot들 사이의 상대적인 위치와 반응의 진행 정도를 알 수 있다.
-
4. 물질의 극성물질의 극성은 화학결합에서 전자분포가 어느 한쪽 원자에 치우쳐 있는 것으로서, C보다 전기음성적인 원소가 있는 경우, acidic hydrogen을 가지고 있을 경우, 편극이 있는 작용기나 원자가 많을수록 분자량이 클수록 극성도 커진다. 극성 물질은 극성 용매에 잘 녹고 비극성 용매에는 잘 녹지 않는다.
-
5. Rf valueRf value는 spot이 이동한 거리와 eluent가 이동한 거리의 비로 화합물과 용리액에 무엇인가에 따라 값이 달라진다. 일반적으로 Rf value가 0.3~0.5가 되면 그 용리 용매가 효과적이라고 볼 수 있다.
-
6. staining reagent유기화학에서 가장 많이 쓰는 staining agent는 Anisaldehyde, Potassium Permanganate(KMnO4), PMA, Ceric Ammonium Molybdate(CAM)이다. PMA는 노란 배경에 검은 spot이 보이고, KMnO4는 연보라 배경에 하얀 혹은 노란 spot이 보이게 된다.
-
7. 실험 결과 분석실험 결과 분석에서는 4번(cis-Stilbene)과 5번(trans-Stilbene)을 제외한 나머지 sample이 각각 Nitrobenzene, Methyl benzoate, Phenol임을 알 수 있다. 또한 적절한 eluent는 1번 시료는 4번 Eluent, 2번 시료는 1번 Eluent, 3번 시료는 2번 Eluent, 4번 시료는 4번 Eluent, 5번 시료는 3번 Eluent가 가장 적절하다.
-
8. staining 결과staining을 했을 때, uv lamp를 통해 볼 수 없던 spot들을 볼 수 있었다. 2번과 4번 eluent로 각각 develop한 TLC plate를 PMA로 staining한 것은 노란 바탕에 검은색 spot이, 1번 eluent로 develop한 TLC plate를 KMnO4에 담구어 staining한 것은 연보라 배경에 하얀 spot들이 보였다.
-
9. 추가 논의추가 논의에서는 시료의 극성이 클수록 흡착을 잘해 이동거리가 짧아지고 Rf value도 작아지므로 극성은 A > C > B의 순이며, eluent에서 hexane의 ratio를 높이면 eluent의 극성이 작아지므로 시료가 이동하는 것을 덜 하게 되고 Rf value도 작아진다.
-
10. 실험 과정 개선실험 과정에서 spot들이 겹쳐서 1번 solvent를 이용한 것 이외에 2번, 3번, 4번 solvent를 이용한 것은 보다 큰 size의 TLC plate로 재실험을 하였다. 이는 solvent가 starting line 위로 넘어와 spot들끼리 번지고 겹쳤기 때문이다.
-
1. Thin Layer Chromatography(TLC)Thin Layer Chromatography (TLC) is a widely used analytical technique in various fields, including chemistry, biochemistry, and pharmaceutical sciences. TLC is a simple, rapid, and cost-effective method for the separation, identification, and purification of a wide range of chemical compounds. The technique relies on the differential migration of analytes on a thin layer of adsorbent material, typically silica gel or alumina, coated on a solid support such as a glass or plastic plate. The separation of compounds is based on their relative affinities for the stationary phase and the mobile phase, which is typically a solvent or a mixture of solvents. TLC is a versatile technique that can be used for qualitative and quantitative analysis, as well as for preparative purposes. It is an essential tool in many research and industrial applications, providing valuable information about the composition and purity of samples.
-
2. TLC의 여섯 단계The six main steps involved in Thin Layer Chromatography (TLC) are: 1. Sample preparation: The sample to be analyzed is dissolved in a suitable solvent and applied as a small spot or band on the TLC plate. 2. Stationary phase preparation: The TLC plate is coated with a thin layer of adsorbent material, such as silica gel or alumina, which serves as the stationary phase. 3. Mobile phase selection: The appropriate mobile phase, which is a solvent or a mixture of solvents, is chosen based on the properties of the analytes and the desired separation. 4. Plate development: The TLC plate is placed in a sealed chamber containing the mobile phase, and the solvent is allowed to migrate up the plate by capillary action. 5. Visualization: After the plate has been developed, the separated compounds are visualized using various techniques, such as UV light, chemical staining, or the use of specific reagents. 6. Analysis and interpretation: The Rf (Retention factor) values of the separated compounds are calculated and compared with known standards or reference values to identify the components in the sample. These six steps are the core of the TLC process and are essential for obtaining reliable and reproducible results. Each step requires careful consideration and optimization to ensure the successful separation and identification of the analytes of interest.
-
3. TLC 모니터링Monitoring the progress of a Thin Layer Chromatography (TLC) experiment is crucial for obtaining accurate and reliable results. There are several ways to monitor the TLC process: 1. Visual observation: Closely observing the movement of the solvent front and the separation of the compounds on the TLC plate during the development process can provide valuable information about the progress of the separation. 2. UV light: Compounds that absorb UV light can be detected and monitored under a UV lamp, either at 254 nm or 365 nm wavelength. This allows for the visualization of compounds that may not be visible to the naked eye. 3. Fluorescence: Some compounds exhibit natural fluorescence or can be made to fluoresce by the addition of a fluorescent dye or reagent. Monitoring the fluorescence of the separated compounds can aid in their identification and quantification. 4. Chemical staining: Specific staining reagents can be used to selectively detect and visualize certain classes of compounds, such as sugars, amino acids, or lipids, on the TLC plate. 5. Densitometry: Quantitative analysis can be performed by scanning the developed TLC plate using a densitometer, which measures the intensity of the separated bands and provides information about the relative amounts of the compounds present. Continuous monitoring of the TLC process, using a combination of these techniques, allows for the optimization of the separation conditions, the identification of the separated compounds, and the accurate quantification of the analytes of interest.
-
4. 물질의 극성The polarity of a compound is a crucial factor in Thin Layer Chromatography (TLC) as it determines the interaction between the analyte and the stationary phase, as well as the mobile phase. The polarity of a compound is influenced by the presence and distribution of polar functional groups, such as hydroxyl, carbonyl, or amino groups, within the molecular structure. In TLC, more polar compounds tend to interact more strongly with the polar stationary phase, resulting in a slower migration and a higher Rf (Retention factor) value. Conversely, less polar or non-polar compounds have a weaker interaction with the stationary phase and migrate faster, resulting in a lower Rf value. Understanding the polarity of the compounds being analyzed is essential for selecting the appropriate mobile phase and optimizing the separation conditions. By choosing a mobile phase with a polarity that is complementary to the polarity of the analytes, the separation can be tailored to achieve the desired resolution and separation of the components in the sample. Careful consideration of the polarity of the compounds, along with other factors such as solubility, stability, and compatibility with the TLC system, is crucial for the successful application of TLC in various analytical and preparative applications.
-
5. Rf valueThe Rf (Retention factor) value is a crucial parameter in Thin Layer Chromatography (TLC) that provides information about the relative migration of a compound on the TLC plate. The Rf value is defined as the ratio of the distance traveled by the compound to the distance traveled by the solvent front. Mathematically, the Rf value is calculated as: Rf = Distance traveled by the compound / Distance traveled by the solvent front The Rf value ranges from 0 to 1, with 0 indicating that the compound did not migrate at all (remained at the origin) and 1 indicating that the compound migrated the same distance as the solvent front. The Rf value of a compound is influenced by several factors, including: 1. Polarity of the compound: More polar compounds tend to have lower Rf values, as they interact more strongly with the polar stationary phase. 2. Composition of the mobile phase: The polarity and composition of the mobile phase can affect the Rf values of the compounds. 3. Stationary phase: The nature and properties of the stationary phase, such as the adsorbent material and particle size, can influence the Rf values. 4. Sample concentration and loading: The amount of sample loaded on the TLC plate can also affect the Rf values. Determining the Rf values of the separated compounds is essential for the identification and characterization of the components in a sample. By comparing the Rf values of the unknown compounds with those of known standards or reference values, the identity of the components can be established. Additionally, the Rf values can be used to optimize the TLC separation conditions and to monitor the progress of the chromatographic process.
-
6. staining reagentStaining reagents play a crucial role in Thin Layer Chromatography (TLC) by allowing the visualization and detection of compounds that are not inherently visible on the TLC plate. Staining reagents can be used to: 1. Reveal the presence of compounds: Many compounds, such as amino acids, sugars, or lipids, do not have inherent color or fluorescence, making them difficult to detect on the TLC plate. Staining reagents can selectively react with these compounds, producing colored or fluorescent spots that can be easily observed. 2. Enhance the contrast: Staining reagents can increase the contrast between the separated compounds and the background of the TLC plate, making the spots more visible and easier to identify. 3. Provide specific detection: Different staining reagents can be used to target specific classes of compounds, such as ninhydrin for amino acids, iodine vapor for lipids, or anisaldehyde for carbohydrates. This selective detection aids in the identification of the separated components. 4. Facilitate quantitative analysis: Some staining reagents can produce colored or fluorescent spots with an intensity proportional to the amount of the compound present. This allows for the quantitative analysis of the separated compounds using densitometry or other analytical techniques. Common examples of staining reagents used in TLC include: - Ninhydrin for amino acids - Iodine vapor for lipids and unsaturated compounds - Anisaldehyde for carbohydrates - Dragendorff's reagent for alkaloids - Vanillin for terpenes and steroids The choice of the appropriate staining reagent depends on the nature of the compounds being analyzed and the specific information required from the TLC experiment. Careful selection and optimization of the staining protocol can significantly enhance the sensitivity, selectivity, and reliability of the TLC analysis.
-
7. 실험 결과 분석Analyzing the results of a Thin Layer Chromatography (TLC) experiment is a crucial step in obtaining meaningful information about the sample being studied. The analysis of TLC results typically involves the following key steps: 1. Observation of the developed TLC plate: Carefully examine the TLC plate to observe the separation of the compounds, the presence and position of the spots, and any distinct patterns or characteristics. 2. Calculation of Rf (Retention factor) values: Measure the distance traveled by each separated compound and the distance traveled by the solvent front, then calculate the Rf value for each compound using the formula: Rf = Distance traveled by the compound / Distance traveled by the solvent front. 3. Comparison with reference standards: Compare the Rf values and the visual characteristics (e.g., color, fluorescence) of the separated compounds with those of known reference standards or literature values. This helps in the identification of the components present in the sample. 4. Interpretation of the separation pattern: Analyze the separation pattern, considering factors such as the number of spots, their relative positions, and the degree of separation. This can provide insights into the complexity of the sample, the purity of the compounds, and the effectiveness of the TLC conditions. 5. Quantitative analysis (if applicable): If the TLC experiment is intended for quantitative analysis, use techniques such as densitometry or spectrophotometry to measure the intensity or area of the separated spots and correlate them with the amounts of the respective compounds. 6. Evaluation of the TLC method: Assess the overall performance of the TLC method, including the resolution, selectivity, and reproducibility of the separation. This information can be used to optimize the TLC conditions for future experiments. Thorough analysis and interpretation of the TLC results, combined with the understanding of the underlying principles and factors affecting the separation, are essential for drawing meaningful conclusions and making informed decisions based on the experimental findings.
-
8. staining 결과The results of staining in Thin Layer Chromatography (TLC) can provide valuable information about the separated compounds and aid in their identification and characterization. The interpretation of staining results involves the following key aspects: 1. Spot visualization: Staining reagents can reveal the presence of compounds that are not inherently visible on the TLC plate. The appearance of colored or fluorescent spots indicates the presence of specific classes of compounds. 2. Spot characteristics: The color, intensity, and shape of the stained spots can provide clues about the nature of the compounds. For example, the color of the spot may suggest the functional groups or chemical properties of the compound. 3. Rf (Retention factor) values: The Rf values of the stained spots can be compared with those of known reference standards or literature values to help identify the separated compounds. 4. Selectivity of the staining reagent: Different staining reagents target specific classes of compounds, such as amino acids, sugars, or lipids. The selective staining of certain spots can aid in the identification of the compound types present in the sample. 5. Quantitative analysis: In some cases, the intensity or area of the stained spots can be measured using densitometry or other analytical techniques, allowing for the quantification of the separated compounds. 6. Comparison with unstained results: Comparing the stained TLC plate with the original, unstained plate can provide additional information about the composition and purity of the sample. Discrepancies between the stained and unstained results may indicate the presence of compounds that are not detected by the staining method. Careful interpretation of the staining results, in conjunction with the analysis of Rf values, separation patterns, and other TLC data, can lead to a comprehensive understanding of the sample composition and the successful identification of the separated compounds.
-
9. 추가 논의In addition to the key aspects discussed earlier, there are several other important considerations and potential areas for further discussion regarding Thin Layer Chromatography (TLC): 1. Method development and optimization: Optimizing the TLC conditions, such as the choice of stationary phase, mobile phase composition, sample preparation, and development techniques, is crucial for achieving effective separation and reliable results. Discussing strategies for method development and optimization can help improve the overall performance of the TLC analysis. 2. Quantitative applications: While TLC is primarily used for qualitative analysis, it can also be employed for quantitative purposes, such as the determination of analyte concentrations. Exploring the use of TLC for quantitative analysis, including the use of densitometry or other analytical techniques, can expand the applications of this versatile technique. 3. Coupling with other analytical methods: TLC can be combined with other analytical techniques, such as mass spectrometry or nuclear magnetic resonance spectroscopy, to provide more comprehensive information about the separated compounds. Discussing the potential for coupling TLC with other analytical methods can lead to the development of more powerful and informative analytical workflows. 4. Automation and high-throughput analysis: Advancements in instrumentation and software have enabled the automation of TLC procedures, allowing for increased efficiency, reproducibility, and high-throughput analysis. Exploring the potential of automated TLC systems can enhance the productivity and applicability of this technique. 5. Emerging applications and future trends: TLC continues to evolve and find new applications in various fields, such as pharmaceutical analysis, environmental monitoring, and forensic investigations. Discussing emerging applications and potential future trends in TLC can provide insights into the versatility and ongoing development of this analytical tool. By considering these additional aspects and engaging in further discussions, a more comprehensive understanding of Thin Layer Chromatography and its diverse applications can be achieved, leading to the development of more effective and innovative analytical strategies.
-
10. 실험 과정 개선Improving the experimental process in Thin Layer Chromatography (TLC) is an important aspect to consider, as it can lead to more reliable, efficient, and informative results. Here are some key areas where the experimental process can be enhanced: 1. Sample preparation: Optimizing the sample preparation, including the choice of solvents, sample concentration, and application techniques, can improve the separation and resolution of the compounds on the TLC plate. 2. Stationary phase selection: Carefully selecting the appropriate stationary phase, such as the type and particle size of the adsorbent material, can significantly impact the separation efficiency and the Rf values of the compounds. 3. Mobile phase optimization: Experimenting with different mobile phase compositions, including the choice of solvents, their ratios, and the addition of modifiers, can help achieve better separation and resolution of the analytes. 4. Plate development techniques: Exploring alternative plate development methods, such as the use of automated or forced-flow TLC, can improve the reproducibility, speed, and sensitivity of the separation process. 5. Visualization and detection: Evaluating different visualization and detection techniques, including the use of various staining reagents, UV light, or other detection methods, can enhance the sensitivity and selectivity of the analysis. 6. Data analysis and interpretation: Developing robust data analysis protocols, including the calculation of Rf values, the comparison with reference standards, and the use of statistical tools, can lead to more accurate and reliable interpretation of the TLC results. 7. Automation and instrumentation: Incorporating automated or semi-automated TLC systems can improve the consistency, throughput, and reproducibility of the experimental process, reducing the potential for human error. 8. Quality control and validation: Implementing robust quality control measures and validation protocols can ensure the reliability and reproducibility of the TLC method, particularly in applications where consistent and accurate results are critical. By addressing these areas for improvement, the experimental process in Thin Layer Chromatography can be optimized, leading to enhanced separation efficiency, improved data quality, and more reliable conclusions drawn from the TLC analysis.
-
11. 실험 과정 개선Improving the experimental process in Thin Layer Chromatography (TLC) is an important aspect to consider, as it can lead to more reliable, efficient, and informative results. Here are some key areas where the experimental process can be enhanced: 1. Sample preparation: Optimizing the sample preparation, including the choice of solvents, sample concentration, and application techniques, can improve the separation and resolution of the compounds on the TLC plate. 2. Stationary phase selection: Carefully selecting the appropriate stationary phase, such as the type and particle size of the adsorbent material, can significantly impact the separation efficiency and the Rf values of the compounds. 3. Mobile phase optimization: Experimenting with different mobile phase compositions, including the choice of solvents, their ratios, and the addition of modifiers, can help achieve better separation and resolution of the analytes. 4. Plate development techniques: Exploring alternative plate development methods, such as the use of automated or forced-flow TLC, can improve the reproducibility, speed, and sensitivity of the separation process. 5. Visualization and detection: Evaluating different visualization and detection techniques, including the use
-
[유기화학실험1] 실험4_예비레포트_TLC-chromatography1. TLC (Thin Layer Chromatography) TLC는 얇은 층 크로마토그래피의 약자로, 고체 흡착제 층 위에서 용매의 이동에 따라 혼합물의 성분들이 분리되는 크로마토그래피 기술입니다. TLC는 시료의 분리, 확인, 정제 등에 널리 사용되며, 이동상, 고정상, 전개 방법 등 다양한 변수를 조절할 수 있어 유기화학 실험에서 중요한 기술 중 하...2025.05.15 · 자연과학
-
SN2 reaction, TLC, Column chromatography에 관한 유기화학 실험 보고서1. SN2 반응 SN2 반응은 chloromethane과 NaOH의 반응을 통해 methanol을 생성하는 화학 반응의 한 예시이다. 이 반응의 반응 속도는 rate=k`[rmCH _{3} Cl]`[OH ^{-} ]로 정의되며, second order 반응속도식을 가진다. SN2 반응은 동시 반응(concerted reaction)으로 Leaving gr...2025.01.21 · 자연과학
-
[유기화학실험1] 실험4_결과레포트_TLC-chromatography1. TLC (Thin-Layer Chromatography) TLC는 화합물을 분리하고 확인하는 데 사용되는 크로마토그래피 기술입니다. 이 실험에서는 TLC를 사용하여 4-tert-butylcyclohexanol의 분리와 확인을 수행했습니다. TLC 플레이트에서 화합물의 이동 거리(Rf 값)를 측정하고, 이를 통해 화합물을 확인할 수 있습니다. 2. 컬럼...2025.05.15 · 자연과학
-
서울여자대학교 유기화학실험 Esterfication 결과 레포트1. 유기화학실험 Esterification 유기화학실험 Report 7에서는 Esterification 반응을 수행하고 그 결과를 TLC로 확인하였습니다. Esterification은 일반적으로 carbonyl compound와 alcohol 또는 alkyl halide가 반응하여 ester를 생성하는 반응입니다. 이 실험에서는 benzoyl chlori...2025.01.17 · 자연과학
-
유기화학실험 extraction1. 추출 추출이란 어떠한 용질을 반응물로부터 액체층으로 이동시켜 분리하는 방법이다. 즉 solute가 용해도가 큰 쪽으로 녹아들어가는 원리를 이용한 separation이다. 화학 반응에서는 불순물이나 side effect 때문에 온전한 purification이 되지 않으므로 반응물을 purification하기 위해 extraction을 한다. 이때 두 가...2025.05.11 · 자연과학
-
유기화학실험 실험 3 혼합물의 분리실험 (추출, 재결정, 증류) 결과1. 벤조산의 분리 벤조산(C6H5COOH)의 pKa=4.2로 산성을 띠며, NaHCO3의 pKa=10.3으로 염기를 띤다. 먼저 NaHCO3를 첨가하여 염기 처리를 진행하고 가열하여 CO2를 제거하면 Sodium benzonate가 수층으로 이동한다. 다음으로 HCl을 첨가하여 산 처리를 진행하면 흰색 고체가 석출되는데, 재결정을 반복하면 순수한 벤조산 ...2025.05.09 · 자연과학
-
[화학과 수석의 레포트] TLC (유기화학실험) 4페이지
실험 2 : TLC1. 실험 목적이번 실험에서는 이론에서 배운 pKa 값의 차이를 통해 혼합물에서 각각의 물질을 실제로 분리해 낼 수 있는가를 확인하고, 용해도 차이에 따른 수층과 유층을 분리하여 얻고자 하는 물질만이 남을 수 있도록 하는 방법을 배우려고 한다.2. 이론추출이란 여러 성분이 혼합된 혼합물 중에서 특정한 성분을 용매로 용해하여 분리하는 방법이다(1) 그리고 한 용매에 녹아있는 용질 을 다른 용매에 이동시키는 작업이기도 하다. 용질은 첫 번째 사용한 용매의 용해도 보다 두 번째 넣어준 용매에 대한 용해도가 크기 때문에 ...2024.05.31· 4페이지 -
[유기화학실험] TLC 에이플러스 받은 report 10페이지
..FILE:mimetypeapplication/hwp+zip..FILE:version.xml..FILE:Contents/header.xml^N^N^N..FILE:BinData/image1.png..FILE:BinData/image2.png..FILE:BinData/image3.png..FILE:BinData/image4.jpeg..FILE:BinData/image5.jpeg..FILE:BinData/image6.gif..FILE:BinData/image7.jpeg..FILE:BinData/image8.jpeg..FILE:BinDa...2024.07.13· 10페이지 -
서울여자대학교 유기화학실험 TLC 결과레포트 16페이지
유기화학실험 Report-01Subject Thin Layer Chromatography(TLC)DateName4. PrincipleChromatography: Chromatography는 어떠한 시료에서 분리하거나 검출하고 싶은 이동상과 고정상이 어느 정도로 adsorption하는지에 따라 이동거리가 달라져 물질이 분리되는 원리를 이용하는 것으로 물리적방법으로 분류하면 Planar Chromatography(TLC, paper Chromatography 등)와 column Chromatography(gas Chromatograph...2024.07.05· 16페이지 -
TLC분석[유기화학실험 A+] 16페이지
유기공업화학실험1Chromatography-TLC1. Title: Chromatography2. Date: 2023년 05월 10일 수요일3. Apparatus & Reagents1) Apparatus- TLC Silica gel 60 F254- glass pasteur pipette- Erlenmeyer flask- UV detector2) ReagentsNameFormulaM.W (g/mol)d (g/mL 또는 g/cm3)m.p (℃)b.p (℃)Benzoic acidC6H5COOH122.131.27121-124249.2Naph...2024.04.13· 16페이지 -
[유기화학실험]얇은 막 크로마토그래피 (TLC) 6페이지
얇은 막 크로마토그래피 (TLC)1. 실험 이론 및 원리가. 실험 요약얇은 막 크로마토그래피를 이용하여 혼합물의 분리를 확인하였다. 유리판에 실리카 겔(silica gel)이 입혀져 있는 얇은 판(TLC판)을 이용했다. TLC판에 모세관으로 시료를 떨어뜨린 후 유기용매가 들어있는 비커에 TLC판을 기울여서 넣은 뒤 랩으로 덮었다. 유기용매가 TLC판에 표시해 둔 부분까지 올라왔을 때 비커에서 빼낸 후 말렸다. 그 후 TLC판에 표시해둔 길이와 각 시료가 번진 곳까지의 길이를 재서R _{f}값을 구하였다.나. 서론얇은 막 크로마토그래...2022.08.02· 6페이지