
DAQ
문서 내 토픽
-
1. Data acquisitionData acquisition은 아날로그 장치, 마이크로프로세서나 컴퓨터를 이용하여 데이터를 저장하는 것이다. Data acquisition의 장점은 데이터를 매우 간단하게 저장할 수 있고, 데이터의 정확도를 증가시키며, 데이터를 실시간 제어 시스템에서 사용할 수 있고, 사건이 발생하고 오랜 후에도 데이터를 처리할 수 있다.
-
2. D/A converterD/A converter는 Digital to Analog converter로, 디지털 신호를 아날로그 신호로 바꾸는 전자장치이다. 이는 컴퓨터와 같은 다른 Digital 장치를 외부 Analog 회로와 장치에 연결할 수 있게 해준다.
-
3. A/D converterA/D converter는 Analog to Digital converter로, 아날로그 신호을 디지털 신호로 변환하는 전자장치이다. A/D 변환기의 출력은 MCU(Microcontroller unit)나 컴퓨터 같은 디지털 장치로 직결된다.
-
4. Discrete signalDiscrete signal은 양의 시퀀스로 구성된 시계열로 연속 신호를 sampling 한 신호이다. 이산 신호는 수열인 반면, 연속 신호는 연속 함수이다. 양자화된 디지털 신호와도 구분되며 아날로그 신호를 sampling 할 때 Digital 처리장치에서 호환할 수 있는 값을 사용하기 위해 Discrete signal을 사용한다.
-
5. Function generator함수발생기는 다양한 교류를 만들어내는 장비이다. 파형의 다양한 특성을 제어할 수 있고, 많은 가변 범위를 가져 회로시스템의 주파수 특성을 분석하는데 강점이 있다.
-
6. FrequencyFrequency는 물리량으로 진동하는 물체가 단위 시간 동안 진동하는 횟수이다.
-
7. Sampling rateSampling rate는 Analog 신호를 충실히 표현하기 위한 Digital 샘플의 최소 주파수이다.
-
8. HzHz는 주파수의 단위로 1Hz는 1초 동안 물체가 1회 진동하는 것을 의미한다. Hz는 물리학에서 진동의 빈도를 측정하는 데 사용된다.
-
9. FFTFFT를 통한 주파수 분석은 기본적으로 양쪽에 대칭된 복소수 스펙트럼으로 생성된다. 하지만 단일 측 주파수 스펙트럼(Single-Sided Amplitude Spectrum)에서는 그래프를 시각화 할 때 양수 주파수 성분만 시각화한다. 이에 따라 대칭성이 사라진 것처럼 보인다.
-
10. 신호 분석주어진 신호의 FFT 분석 결과, 진폭 1.4의 DC 오프셋, 진폭 1의 100Hz 정현파, 진폭 0.63의 160Hz 정현파를 포함하는 것을 알 수 있다.
-
1. Data acquisitionData acquisition is the process of sampling signals that measure real-world physical conditions and converting the resulting samples into digital numeric values that can be manipulated by a computer. It is a critical component in many scientific and engineering applications, allowing researchers and engineers to collect and analyze data from various sources. The key aspects of data acquisition include sensor selection, signal conditioning, analog-to-digital conversion, and data storage and processing. Effective data acquisition systems must be designed to accurately capture the relevant information while minimizing noise and other sources of error. As technology continues to advance, data acquisition systems are becoming more sophisticated, offering higher resolutions, faster sampling rates, and greater integration with digital signal processing and analysis tools. Overall, data acquisition plays a vital role in enabling the collection and analysis of real-world data, which is essential for scientific discovery, product development, and system optimization.
-
2. D/A converterA D/A (Digital-to-Analog) converter is a critical component in many electronic systems that require the conversion of digital signals into analog signals. D/A converters play a crucial role in bridging the gap between the digital world, where information is represented as discrete binary values, and the analog world, where signals are continuous in nature. These converters are essential in a wide range of applications, including audio and video playback, industrial control systems, and communication networks. The key function of a D/A converter is to take a digital input, typically a series of binary digits, and convert it into a corresponding analog output, such as a voltage or current. The quality and accuracy of this conversion process are crucial, as they can directly impact the performance and fidelity of the final analog signal. D/A converters come in various architectures and resolutions, each with its own strengths and trade-offs, allowing designers to select the most appropriate solution for their specific application requirements. As technology continues to evolve, D/A converters are becoming more advanced, offering higher resolutions, faster conversion speeds, and improved linearity and noise performance, enabling increasingly sophisticated analog signal processing and control systems.
-
3. A/D converterAn A/D (Analog-to-Digital) converter is a fundamental component in modern electronic systems that enables the conversion of analog signals into digital representations. These converters play a crucial role in bridging the gap between the analog world, where information is represented as continuous signals, and the digital world, where data is processed and stored as discrete binary values. A/D converters are essential in a wide range of applications, including audio and video processing, industrial automation, medical instrumentation, and communication systems. The key function of an A/D converter is to sample an analog input signal at discrete time intervals and quantize the signal amplitude into a corresponding digital code, typically a series of binary digits. The quality and accuracy of this conversion process are critical, as they can directly impact the fidelity and resolution of the digital representation. A/D converters come in various architectures, such as successive approximation, flash, and sigma-delta, each with its own strengths and trade-offs in terms of speed, resolution, power consumption, and cost. As technology continues to advance, A/D converters are becoming more sophisticated, offering higher resolutions, faster conversion speeds, and improved signal-to-noise ratios, enabling increasingly accurate and efficient digital signal processing and control systems.
-
4. Discrete signalA discrete signal is a type of signal that is defined only at specific, discrete points in time, rather than being a continuous function over time. Discrete signals are commonly encountered in digital systems and are the result of sampling a continuous-time analog signal at regular intervals. The key characteristics of a discrete signal are that it is represented by a sequence of numerical values, each corresponding to the signal amplitude at a specific point in time, and that the signal is only defined at these discrete time instants, with no information available between the sampling points. Discrete signals are essential in digital signal processing, as they can be efficiently stored, manipulated, and analyzed using digital computers and algorithms. They are widely used in a variety of applications, including audio and video processing, telecommunications, control systems, and digital instrumentation. The sampling rate, which determines the number of samples taken per unit of time, is a critical parameter that affects the fidelity and bandwidth of the discrete signal representation. Proper sampling, in accordance with the Nyquist-Shannon sampling theorem, is crucial to ensure that the discrete signal accurately captures the essential features of the original continuous-time signal.
-
5. Function generatorA function generator is an electronic instrument that is used to produce various types of electrical waveforms, such as sine waves, square waves, triangle waves, and sawtooth waves. These waveforms are commonly used in a wide range of applications, including electronics design, testing, and troubleshooting, as well as in educational and research settings. Function generators are essential tools for engineers and technicians, as they allow them to generate precise and controlled signals that can be used to stimulate and test electronic circuits and systems. The key features of a function generator include the ability to adjust the frequency, amplitude, and waveform of the output signal, as well as the option to modulate the signal in various ways, such as through amplitude, frequency, or phase modulation. More advanced function generators may also offer additional features, such as the ability to generate arbitrary waveforms, sweep the frequency, or synchronize the output with external signals. Function generators are widely used in a variety of applications, including audio and video signal generation, circuit design and testing, and the characterization of electronic components and systems.
-
6. FrequencyFrequency is a fundamental concept in the study of waves and oscillations, and it is a critical parameter in many areas of science and engineering. Frequency is defined as the number of cycles or oscillations that occur per unit of time, typically measured in Hertz (Hz). In the context of signals and systems, frequency is a key characteristic that determines the behavior and properties of various phenomena, such as sound, light, and electromagnetic radiation. Understanding and manipulating frequency is essential in a wide range of applications, including communication systems, audio and video processing, radar and sonar, and the design of electronic circuits and devices. The frequency of a signal can be used to determine its energy content, bandwidth, and propagation characteristics, among other important properties. Accurate measurement and control of frequency are crucial in many scientific and engineering disciplines, as they enable the precise analysis, transmission, and processing of information. As technology continues to advance, the importance of frequency and its applications only continues to grow, driving the development of increasingly sophisticated frequency-based systems and devices.
-
7. Sampling rateThe sampling rate, also known as the sampling frequency, is a critical parameter in the field of digital signal processing and data acquisition. It refers to the number of samples of a continuous-time signal that are taken per unit of time, typically measured in samples per second (Hz). The sampling rate is a crucial factor in determining the fidelity and accuracy of the digital representation of an analog signal. According to the Nyquist-Shannon sampling theorem, the sampling rate must be at least twice the highest frequency component present in the original analog signal in order to accurately capture and reconstruct the signal without loss of information. Failure to meet this sampling rate requirement can lead to the phenomenon of aliasing, where high-frequency components are incorrectly represented as lower-frequency components. The choice of sampling rate is a crucial design decision that involves balancing factors such as signal bandwidth, data storage requirements, and processing power. Higher sampling rates generally provide better signal fidelity but require more computational resources and storage capacity. Conversely, lower sampling rates can reduce system complexity and cost but may result in a loss of signal information. Understanding and properly selecting the appropriate sampling rate is essential in a wide range of applications, including audio and video processing, medical imaging, and industrial control systems, to ensure accurate and reliable digital signal representation and processing.
-
8. HzHz, or Hertz, is the unit of measurement for frequency, which is the number of cycles or oscillations that occur per unit of time. Frequency is a fundamental concept in many areas of science and engineering, as it is a key characteristic of various types of waves and oscillations, such as sound, light, and electromagnetic radiation. The Hertz unit is named after the German physicist Heinrich Hertz, who made significant contributions to the understanding of electromagnetic waves. In the context of signals and systems, frequency is a crucial parameter that determines the behavior and properties of various phenomena. For example, the frequency of a sound wave determines its pitch, while the frequency of an electromagnetic wave determines its energy and propagation characteristics. Accurate measurement and control of frequency are essential in a wide range of applications, including communication systems, audio and video processing, radar and sonar, and the design of electronic circuits and devices. As technology continues to advance, the importance of frequency and its applications only continues to grow, driving the development of increasingly sophisticated frequency-based systems and devices. Understanding and working with the Hertz unit is a fundamental skill for anyone involved in the study or application of waves, signals, and oscillations.
-
9. FFTFFT, or the Fast Fourier Transform, is a powerful algorithm used to efficiently compute the Discrete Fourier Transform (DFT) of a discrete-time signal. The Fourier Transform is a fundamental mathematical tool that allows the representation of a signal in the frequency domain, which is often more informative and useful than the time-domain representation. The FFT algorithm significantly reduces the computational complexity of the DFT, making it a widely adopted technique in digital signal processing and analysis. The key advantages of the FFT include its ability to quickly decompose a signal into its constituent frequency components, enabling the analysis of the signal's frequency content and the identification of dominant frequencies. This information is crucial in a wide range of applications, such as audio and speech processing, vibration analysis, image processing, and communication systems. The FFT also forms the basis for many other signal processing techniques, such as spectral analysis, filtering, and modulation. As digital systems and computing power have advanced, the use of the FFT has become increasingly prevalent, allowing for real-time and high-performance signal processing in a variety of fields, from scientific research to consumer electronics. Understanding the principles and applications of the FFT is an essential skill for anyone working with digital signals and systems.
-
10. 신호 분석신호 분석은 다양한 분야에서 중요한 역할을 하는 핵심 기술이다. 신호 분석은 시간 영역, 주파수 영역, 또는 시간-주파수 영역에서 신호의 특성을 파악하고 분석하는 것을 의미한다. 이를 통해 신호의 주요 특성, 주파수 성분, 변화 패턴 등을 이해할 수 있다. 신호 분석은 음성 및 음향 신호 처리, 의료 영상 분석, 통신 시스템 설계, 기계 진동 모니터링 등 다양한 분야에서 활용된다. 예를 들어, 음성 신호 분석을 통해 음성 인식 및 합성 기술을 개발할 수 있고, 의료 영상 분석을 통해 질병 진단 및 치료 계획을 수립할 수 있다. 또한 기계 진동 분석을 통해 고장 진단 및 예지보전 시스템을 구축할 수 있다. 신호 분석 기술은 지속적으로 발전하고 있으며, 다양한 센서 및 데이터 처리 기술과 융합되어 더욱 정교하고 효율적인 분석 기법들이 개발되고 있다. 신호 분석 기술의 발전은 우리 삶의 질을 향상시키는 데 크게 기여할 것으로 기대된다.
-
11. Discrete signalDiscrete signals are a fundamental concept in digital signal processing and play a crucial role in a wide range of applications, from audio and video processing to communication systems and industrial automation. A discrete signal is a representation of a continuous-time signal that is sampled at regular intervals, resulting in a sequence of numerical values that capture the signal's amplitude at those specific time points. The key advantage of discrete signals is that they can be efficiently stored, processed, and analyzed using digital computers and algorithms. This allows for the implementation of powerful signal processing techniques, such as filtering, spectral analysis, and digital modulation, which are essential in modern electronic systems. The sampling rate, which determines the number of samples taken per unit of time, is a critical parameter that affects the fidelity and bandwidth of the discrete signal representation. Proper sampling, in accordance with the Nyquist-Shannon sampling theorem, is crucial to ensure that the discrete signal accurately captures the essential features of the original continuous-time signal. As technology continues to advance, the importance of discrete signals and their applications only continues to grow, driving the development of increasingly sophisticated digital signal processing systems and devices.
-
12. A/D converterA/D (Analog-to-Digital) converters are a fundamental component in modern electronic systems, enabling the conversion of analog signals into digital representations. These converters play a crucial role in bridging the gap between the analog world, where information is represented as continuous signals, and the digital world, where data is processed and stored as discrete binary values. A/D converters are essential in a wide range of applications, including audio and video processing, industrial automation, medical instrumentation, and communication systems. The key function of an A/D converter is to sample an analog input signal at discrete time intervals and quantize the signal amplitude into a corresponding digital code, typically a series of binary digits. The quality and accuracy of this conversion process are critical, as they can directly impact the fidelity and resolution of the digital representation. A/D converters come in various architectures, such as successive approximation, flash, and sigma-delta, each with its own strengths and trade-offs in terms of speed, resolution, power consumption, and cost. As technology continues to advance, A/D converters are becoming more sophisticated, offering higher resolutions, faster conversion speeds, and improved signal-to-noise ratios, enabling increasingly accurate and efficient digital signal processing and control systems. Understanding the principles and applications of A/D converters is essential for anyone working in the field of electronic systems and digital signal processing.
DAQ
본 내용은 원문 자료의 일부 인용된 것입니다.
2024.12.18
-
데이터 수집 및 처리(DAQ 시스템)_예비보고서1. DAQ 시스템 DAQ(Data Acquisition)란 DAQ하드웨어를 이용해 하중, 압력, 습도, 가속도, 변위, 토크 등의 아날로그 물리량의 데이터를 수집하고 이를 디지털화하여 계측, 제어 및 분석하는 것을 말한다. DAQ 시스템은 센서, 신호 컨디셔닝, DAQ 하드웨어로 구성된다. 센서는 물리량을 전기 신호로 변환하고, 신호 컨디셔닝은 센서 신호...2025.04.30 · 공학/기술
-
데이터 수집 및 처리(DAQ 시스템)_결과보고서1. 데이터 수집 및 처리 실험1에서는 DAQ 보드를 이용하여 사인파 신호를 수집하고 MATLAB을 통해 데이터를 처리하였습니다. 주기와 진폭 등의 신호 특성을 확인하고, MATLAB의 Polyfit 함수를 사용하여 전압 범위를 보정하였습니다. 또한 duration과 sample time 설정의 중요성을 인식하고 이를 개선하였습니다. 실험2에서는 MATLA...2025.04.30 · 공학/기술
-
Labview Programming 실습 2 결과보고서 (아주대 기계공학기초실험 실험5)1. 랩뷰 프로그래밍 이번 실험에서는 랩뷰에 있는 다양한 기능을 DAQ를 이용하여 아날로그, 디지털신호 입출력해보았다. 실습2-1에서는 랩뷰에서 아날로그 신호를 생성한 후 그 신호를 DAQ로 입출력해 보았고 웨이브폼 차트와 엑셀 그래프로 입력한 신호에 맞게 나오는 것을 확인하였다. 실습2-2에서는 노이즈가 있는 데이터를 저주파 통과 필터를 이용하여 알파 값...2025.04.26 · 공학/기술
-
2023_아주대_기계공학기초실험_랩뷰실습2_만점 결과보고서1. Labview와 DAQ를 이용한 아날로그 입출력 실습 이번 실험에서는 Labview와 DAQ를 사용하여 아날로그 입출력 실습과 디지털 입출력 실습을 진행하고, 데이터를 수집하여 분석해보았습니다. 또한 오실로스코프를 이용하여 프로그래밍의 결과를 비교해보았습니다. 실습 1-1에서는 난수 생성 프로그래밍을, 실습 1-2에서는 Sine 함수와 난수 생성 프로...2025.01.22 · 공학/기술
-
LabView 실습1 결과보고서 (아주대 기계공학기초실험 실험4)1. 랩뷰 프로그래밍 실습1에서는 랩뷰의 While루프 함수를 이용하여 실시간으로 생성되는 0~1 사이의 난수를 웨이브폼 차트에 나타냈다. 이때 While루프는 무한반복 루프이기 때문에 반드시 정지조건을 달아야 한다는 것을 알 수 있었다. 2. 사인 함수 생성 실습2에서는 난수, 상수, 사인 함수를 연산하여 웨이브폼 차트에 나타냈다. 상수값, 사인 함수의 ...2025.04.26 · 공학/기술
-
2023_아주대_기계공학기초실험_랩뷰 실습1_만점 결과보고서1. LabView 실습 이번 실험에서는 Labview 프로그램을 이용하여 컴퓨터를 이용한 Sine 함수에 대한 계측을 진행해보고, 오실로스코프에서 관측한 값과 비교해보며 계측이 올바르게 이루어졌는지 확인하였다. 실습을 통해 난수 생성, Sine 함수와 난수 생성, Sine 함수와 노이즈를 가진 Sine 함수 프로그래밍, DAQ AO를 사용한 아날로그 입출...2025.01.22 · 공학/기술
-
[단국대] DAQ실험 레포트 A+ 9페이지
REPORTDAQ과 목 명:기계공학실험1담당교수:000 교수님소소속속:공과대학 기계공학과학학번번:이이름름:실 험 조:실 험 일:제 출 일:1. 실험 요약1.1 실험 목적DAQ(Data Acquisition)시스템의 기본 원리를 배우며,실험을 위한 DAQ 시스템을 이해하자.DAQ의 카운터, 아날로그/디지털 입출력 등에 관한 이론과 사용법, Function generator와 Oscilloscope에 대해 소개한다. 그리고 LabVIEW(Laboratory Virtual Instrument Engineering Workbench) 해석...2023.11.04· 9페이지 -
[계측공학 및 실습]데이터 수집 및 처리(DAQ 시스템)_예비보고서 8페이지
REPORT제 목 : 데이터 수집 및 처리예비보고서과 목 명 : 계측공학 및 실습담당교수 : 조 O O 교수님제 출 일 : 2014년 03월 19일인하대학교 공과대학항공우주공학과00000000 O O O1. DAQ SystemDAQ(Data Acquisition)란 DAQ하드웨어를 이용해 하중, 압력, 습도, 가속도, 변위, 토크 등의 아날로그 물리량의 데이터를 수집하고 이를 디지털화하여 계측, 제어 및 분석하는 것을 말한다.[ DAQ System의 구성 ]① Sensor ( Transducer, 센서)온도나 압력, 진동과 같은 물...2023.02.10· 8페이지 -
[계측공학 및 실습]데이터 수집 및 처리(DAQ 시스템)_결과보고서 8페이지
REPORT제 목 : 데이터 수집 및 처리결과보고서과 목 명 : 계측공학 및 실습담당교수 : 조 0 0 교수님제 출 일 : 2014년 03월 26일인하대학교 공과대학항공우주공학과00000000 O O O실험1. DAQ보드를 이용한 데이터 획득실험조건Wave FormSine waveFrequency200HzVoltage±5VAmplitude5VCycle0.005 sec실험결과1) 오실로스코프그림1. 오실로스코프2) MATLAB Plot그림2. MATLAB고찰(실험1)실험1에서 함수발생기로 오실로스코프에 입력한 사인파의 주파수는 200...2023.02.10· 8페이지 -
기계공학실험 - DAQ장치와 Labview를 이용한 가속도 측정 24페이지
- 결과 보고서 -실험 제목: 가속도 측정 실험과목명 : 기계 공학 실험제출일: -년 -월 -일실험일자: -년 -월 -일실 험 조 명 :제 출 자 :공동 수행자 :채 점 기 준 ( 담당실험조교 용)형 식/ 10이 론/ 10장 치 및 방 법/ 5결 과 및 토 의/ 25결 론/ 10합 계/ 60비 고- 목 차 -1. 실험 목적2. 실험 이론3. 실험 장치4. 실험 방법5. 실험 결과6. 실험 고찰7. 결 론1. 실험 목적- 가속도 센서를 이용해서 질량 변화에 따른 가속도 변화와 가속도의 측정원리를 이해하고 DAQ장치와 Labview를 ...2020.11.26· 24페이지 -
아주대학교 기계공학응용실험 A+ 예비보고서 DC모터 구동 및 DAQ 4페이지
- 예비 보고서 -실험 제목: DC모터 구동 및 DAQ과목명 : 기계 공학 응용 실험제출일: 05 월 15 일실험일자: 05 월 16 일실 험 조 명 :4반 5조책임 수행자 :공동 수행자 :형 식/ 2이 론/ 3장 치 및 방 법/ 5합 계/ 10비 고아주대학교 기계공학과- 목 차 -1. 실험 목적2. 실험 이론3. 실험 장치4. 실험 방법1. 실험 목적BLDC 모터를 이해하고 Simulink 시뮬레이션을 통해B _{m,```} `K _{t} 값을 변화시켜가며 실험데이터와 비교하여 최종B _{m,```} `K _{t}값을 선정할 수 ...2021.03.25· 4페이지