• AI글쓰기 2.1 업데이트
BRONZE
BRONZE 등급의 판매자 자료
non-ai
판매자가 AI를 사용하지 않은 독창적인 자료

[수리학 2장] 정수역학

수업시간에 발표자료로 사용되는 PPT입니다
68 페이지
파워포인트
최초등록일 2008.02.17 최종저작일 2007.06
68P 미리보기
[수리학 2장] 정수역학
  • 미리보기

    소개

    수업시간에 발표자료로 사용되는 PPT입니다

    목차

    2.1정수역학의 정의
    2.2 대기압과 압력의 단위
    2.3 정수압
    2.4 정수역학의 기본식
    2.5 압력의 전달
    2.6 압력의 측정
    2.7 평면에 작용하는 정수압
    2.8 곡면에 작용하는 정수압
    2.9 부체
    2.10 상대정지

    본문내용

    2장, 정수역학
    2.1정수역학의 정의
    - 유체 요소 사이의 상대적 운동이 없는 상태인 정지상태에 있는 물을 역학적으로 다루는 분야를 정수역학이라 한다.
    - 유체는 인장력에 저항 할 수 없고 내부에 인장응력이 작용하지 않음
    - 또한, 정지상태의 유체에는 오직 압축응력만이 작용하고
    이것을 표면장력의 하나인 압력이라 한다.
    - 정수역학에서는 수압의 계산이나 대기중의 압력변화의 계산,액주계,부력의 원리, 부체의 안정에 관한 문제를 다루며 용기에 담겨진 채 이동하는 물의 상대적 정지문제 등을 다룬다.

    2.4 정수역학의 기본식
    - 그림 2-7과 같이 정수중의 유체요소로 미소직육면체
    를 생각하면 여기에 작용하는 힘은 질량력과 유체요소의 표면에 작용하는 정수압이다.
    2.4 정수역학의 기본식
    이 미소 직육면체에 방향으로 작용하는 압력은 각각 및
    가 되고, 질량력의 축 방향의 성분을
    라 하면 이 육면체가 정수 중에 있으므로 축 방향의
    힘평형 방정식은 다음과 같다.
    여기서, 는 물의 밀도이며, 이 식은 Newton의 제 2법칙
    에서 인 경우이다.

    2.5 압력의 전달
    - 압력 를 로 증가시키면,
    는 가 되고
    점의 압력은 로 되므로 결국
    점의 압력 증가는 이다.
    - 점의 위치는 임의이므로 압력의 증가는 용기 속의 모든 점에 대하여 같다.
    - 이와 같이 밀폐된 용기내의 물에 가한 압력의 증가는
    물 속의 모든 곳에 동일하게 전달된다
    ∴이를 파스칼의 원리라 한다.
    2.5 압력의 전달
    ① 그림 2-9 같은 서로 통할 수 있는 용기를 마개판으로 밀폐하고 외력
    및 를 가하여 평행상태를 유지시킴.
    ② 두 마개판의 단면적을 각각 , 판의 무게와 마찰력을 무시.
    ③ 판 아래의 압력강도는 및 이며 다음의 관계가 존재.
    ④ 외력을 크게 하면 는 생략할 만큼 작아지므로 다음과 같이 된다.

    2.6.1 액주계
    경사액주계
    그림 2-10(b) 과 같이
    용기 또는 관내의 압력이
    작아서 를 측정하기 힘들
    때 액주계가 기울어진
    만큼 즉, 로
    확대되어 읽기가 쉽게
    된다. 이때 압력은 다음
    식으로 계산된다.
    (2-12)
    2.6.1 액주계
    -U자형액주계
    관내 수압이 클 때는 가
    크게 되므로 U자형 사용.
    물 단위 중량
    수은 단위 중량
    일때, 관내 압력 는
    (2-13)
    2.6.1 액주계
    < 그림 2-11(a) >
    차동 압력계, 시차 액주계
    두 관내 압력차가 클 때 사용
    - 그림 2-11(a)에서
    와 의 압력은 같다.
    단위 중량 와 를
    알고, 측정하면
    - A와 B의 압력차를 계산
    할 수 있다.
    (2-14)
    2.6.1 액주계
    < 그림2-11(b) >
    압력차가 작을 때 사용
    - 와 점의 압력이 작으므로 다음 식 성립.
    (2-15)
    - 인 경우,
    (2-16)
    2.6.1 액주계
    2.6.1 액주계
    A,B,C 서로 다른 액체 , 양쪽 단면적 동일
    양 쪽 평형을 생각하면
    - 미차 액주계 : 눈금 정밀하게 읽음

    참고자료

    · 수업에서 사용하는 교재
  • 자료후기

      Ai 리뷰
      지식판매자의 자료는 질이 높고, 각 분야의 전문 지식을 바탕으로 한 콘텐츠가 많아 학습하는 재미가 쏠쏠합니다. 앞으로도 많은 유익한 자료를 기대합니다!
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
        자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
        저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

    함께 구매한 자료도 확인해 보세요!

    찾으시던 자료가 아닌가요?

    지금 보는 자료와 연관되어 있어요!
    왼쪽 화살표
    오른쪽 화살표
    문서 초안을 생성해주는 EasyAI
    안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2025년 12월 31일 수요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    4:31 오후