· Beck-Candanedo, et al. Effect of reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions, Biomacromol, 2005, 6, pp
· 1048-1054.
· Chun, S.J. et al. Eco-friendly cellulose nanofiber-derived separators featuring tunable nanoporous lithium-ion batteries. J. Mater. Chem. 2012, 22:
· 16618-16626
· Dufresne, A. (2010). Processing of polymer nanocomposites reinforced with polysaccharide nanocrystals. Macromolecules, 15, 4111–4128
· Pushparaj, V. L., Shaijumon, M. M. Kumar, A, Murugesan, S. Ci, L. Vajtai. R. Linhardt, R. J. Nalamasu, O. Ajayan, P. M. (2007). Flexible Energy Storage Devices Based on Nanocomposite paper
· Herrick, F. W., Casebier, R. L., Hamilton, J. K., & Sandberg, K. R. (1983). Microfibril-lated cellulose: Morphology and accessibility. Journal of Applied Polymer Science, Applied Polymer Symposium, 37, 797–813.
· Lavoine, N., Desloges, I., Dufrense, A., Bras, J. (2012). Microfibrillated cellulose-Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers, 90, 735-764
· Herrick F.W., Casebier, R.L., Hamilton, J.K., and Sandberg, K.R., Microfibrillated cellulose : morphology and accessibility, J. Appl. POLYM. Sci. : Appl. Polym. Sci. : appl. polym. symp., 37:815~827(1983)
· Hubbe, M.A Rojas, O.J., Lucia, L.A. and Sain, M., Cellulosic nanocomposites : a reivew, bioresources, 3(3):929-980 (2008).
· Klemm, D., Schumann, D., Kramer, F., Hebler, N., Hornung, M., Schmauder, H.P. and Marsch, S., Nanocelluloses as innovative polymers in research and application, J. Appl. Polym. Sci. 205:49~96 (2006)
· Page, D. H. and El-Hosseiny, F., The mechanical properties of single wood pulp fibers, Journal of pulp and paper science 9(11):99~100 (1983)
· Habibi, Y., Lucia, L.A., and Rojas, O., Cellulose nanocrystals: Chemistry, self-assembly, and applications, Chem. Rev. 110(6):3479-3500 (2010).
· Herrick F.W., Casebier, R.L., Hamilton, J.K., and Sandberg, K.R., Microfibrillated cellulose: morphology and accessibility, J. Appl. Polym. Sci.: Appl. Polym. Symp. 37:797-813 (1983).
· Turbak, A.F., Snyder, F.W., and Sandberg, K.R., Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential, J. Appl. Polym. Sci.: Appl. Polym. Symp. 37:815-827 (1983).
· Taipale, T., Osterberg, M., Nykanen, A., Ruokolainen, J., and Laine, J., Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength, Cellulose 17(5):1005-1020 (2010).
· Abe, K., Iwamoto, S., and Yano, H., Obtaining cellulose nanofibers with a uniform width of 15 nm from wood, Biomacromolecules 8(10):3276-3278 (2007).
· Iwamoto, S., Nakagaito, A.N., and Yano, H., Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites, Appl. Phys. A 89(2):461-466 (2007).
· Siqueira, G., Bras, J., and Dufresne, A., Cellulosic bionanocomposites: a review of preparation, properties and applications, Polymers 2:728-765 (2010).
· Siro, I., and Plackett, D., Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose 17(3):459-494 (2010).
· Webb, P.A., and Orr, C., Analytical methods in fine particle technology, Micromeritics Instrument Corporation, Norcross, GA, pp. 56-57 (1997).
· Sehaqui, H., Nanofiber networks, aerogels and biocomposites based on nanofibrillated cellulose from wood, Doctoral Thesis, Stockholm, Sweden (2011).
· Deng, M., Qian, Z., Du, A., van Kasteren, J., and Wang, Y., Preparation of nanoporous cellulose foams from cellulose-ionic liquid solutions, Mater. Lett. 63(21):1851-1854 (2009).
· Sjostrom, E., Wood chemistry fundamentals and applications, Academic Press, New York, p 58 (1981).
· Bledzki, A. K., and Gassan, J., Composites reinforced with cellulose based fibres, Pro. Polym. Sci. 24:221-274 (1999).
· Azizi Samir, M. A. S., Alloin, F., and Dufresne, A., Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomacromolecules, 6:612-626 (2005).
· Nishiyama, Y., Langann, P., and Chanzy, H., Crystal structure and hydrogen-bonding system in cellulose I β from synchrotron X-ray and neutron fiber diffraction, J. Am. Chem. Soc., 124(31):9074-9082 (2002).
· Agarwal, U. P., Reiner, R. S., and Ralph, S. A., Cellulose Ⅰ crystallinity determination using FTRaman spectroscopy: Univariate and multivariate methods, Cellulose 17:721-733 (2010).
· Saeman, J. F., Kineticsof wood saccharification, Ind. Eng. Chem., 37(1):43-52 (1945).
· Bondeson, D., Mathew, A., Oksman, K., Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis, Cellulose 13:171-180 (2006).
· Zhao, H., Kwak, J. H., Zhang, Z. C., Brown, H. M., Arey, B. W., and Holaday, J. E, Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis, Carbohydrate polymers 68:235-241 (2007).
· Araki, J., Wada, M., Kuga, S., Okano, T., Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose, Colloids and surfaces A, 142(1):75-82 (1998).