· Taylor, J., et al., “Understanding and mitigating overheating and indoor PM-2.5 risks
· using coupled temperature and indoor air quality models”, Build Serv. Eng. Res. Technol.,
· 36, 2015, pp.275~289.
· Verma, V., et al., “Organic aerosols associated with the generation of reactive oxygen
· species(ROS) by water soluble PM-2.5”, Environ. Sci. Technol., 49, 2015, pp. 4646~4656
· Balachandran, S., et al., “Bayesian-based ensemble source apportionment of PM-2.5”,
· Environ. Sci. Technol., 47, 2103, pp.13511~13518.
· Bonifacio, H.F., et al., “TSP, PM-10, and PM-2.5 emissions from a beef cattle feedlot
· using the flux gradient technique”, Atmos. Environ., 101, 2015, pp.49~57.
· Canha, N., et al., “Impact of wood burning on indoor PM-2.5 in a primary school in
· rural Portugal”, Atmos. Environ., 94, 2015, pp.663~670.
· Cao, C., et al., “Inhalable microorganisms in Beijing's PM-2.5 and PM-10 pollutants
· during a severe smog event”, Environ. Sci. Technol., 48, 2014, pp.1499~ 1507.
· Crawford, J., et al., “Incorporation of Radon-222 as a parameter in ME-2 to improve
· apportionment of PM-2.5 sources in the Sydney region”, Atmos. Environ., 80, 2013,
· pp.378~388.
· Deshmukh, D.K., et al., “Water-soluble ionic composition of PM-2.5 and PM-2.5
· aerosols in the lower troposphere of an industrial city Raipur, the eastern central India”,
· Air Qual. Atmos. Health, 6, pp.95~110.
· Donateo, A., et al., “Contribution of harbour activities and ship traffic to PM-2.5,
· particle number concentrations and PAHs in a port city of the Mediterranean Sea”,
· Environ. Sci. Pollut. Res., 21, 2014, pp.9415~9429.
· Elsasser, M., et al., “Dynamic changes of the aerosol composition and concen -tration
· during different burning phases of wood combustion”,. Energy Fuel, 27, 2013,
· pp.4959~4968.
· Ezeh, G.C., et al., “Elemental compositions of PM-10 and PM-2.5 aerosols of a
· Nigerian urban city using ion beam analytical techniques”, Nucl. Instrum. Methods, 334,
· 2014, pp.28~33.
· Feng, J., et al., “Investigation of the sources and seasonal variations of secondary
· 28
· organic aerosols in PM-2.5 in Shanghai with organic tracers” Atmos. Environ., 79, 2013,
· pp.614~622.
· Gehling, W., Khachatryan, L., Dellinger, B., “Hydroxyl radical generation from
· environmentally persistent free radicals(EPFRs) in PM-2.5”, Environ. Sci. Technol., 48,
· 2014, pp.4266~4272.
· Hanninen, O.O., et al., “Reduction potential of urban PM-2.5 mortality risk using
· modern ventilation systems in buildings”, Indoor Air, 15, 2005, pp.246~256.
· Ikemori, F., et al., “Influence of contemporary carbon originating from the 2003
· Siberian forest fire on organic carbon in PM-2.5 in Nagoya, Japan”, Sci. Total Environ.,
· 530, 2005, pp.403~410.
· Keuken, M.P., et al., “Source contributions to PM-2.5 and PM-10 at an urban
· background and a street location”, Atmos. Environ., 71, 2013, pp.26~35.
· Limu, Y.L. et al., “Autumn and wintertime polycyclic aromatic hydrocarbons in
· PM-2.5 and PM–10 from Urumqi, China”, Aerosol Air Qual. Res., 13, 2013, pp.407
· ~414.
· Matawle, J., et al., “PM-2.5 chemical source profiles of emissions resulting
· fromindustrial and domestic burning activities in India”, Aerosol Air Qual. Res., 14, 2014,
· pp.2051~2066.
· Nallathamby, P.D., et al., “Qualitative and quantitative assessment of unresolved
· complex mixture in PM-2.5 of Bakersfield”, Atmos. Environ., 98, 2014, pp.368~375.
· oliveira, R.L., et al., “PM-2.5-bound polycyclic aromatic hydrocarbons in an area of
· Rio de Janeiro, Brazil impacted by emissions of light-duty vehicles fueled by
· ethanol-blended gasoline”, Bull. Environ. Contam. Toxicol., 93, 2014, pp.781~786.
· Pachauri, T., et al., “Characteristics and sources of carbonaceous aerosols in PM-2.5
· during wintertime in Agra, India”, Aerosol Air Qual. Res., 13, 2013, pp.977 ~991.
· Pongpiachan, S., et al., “Chemical characterisation of organic functional group
· compositions in PM-2.5 collected at nine administrative provinces in Northern Thailand
· during the haze episode in 2013”, Asian Pac. J. Cancer Prev., 14, 2013, pp.3653~3661.
· Remoundaki, E., et al., “Composition and mass closure of PM-2.5 in urban
· environment”, Aerosol Air Qual. Res., 13, 2013, pp.72~82.
· Rogula-Kozlowska, W., et al., “Spatial and seasonal variability of the mass
· concentration and chemical composition of PM-2.5 in Poland”, Air Qual. Atmos. Health,
· 7, 2014, pp.41~58.
· Saylor, R., et al., “Recent trends in gas-phase ammonia and PM-2.5 ammonium in
· the Southeast United States”, J. Air Waste Manage. Assoc., 65, 2015, pp.347~357.
· 29
· Takahashi, K., et al., “Production-based emissions, consumption-based emissions and
· consumption-based health impacts of PM-2.5 carbonaceous aerosols in Asia”, Atmos.
· Environ., 97, 2014, pp.406~415.
· Barker, H.W., “Isolating the industrial contribution of PM-2.5 in Hamilton and
· Burlington, Ontario”, J. Appl. Meteorol. Climatol., 52, 2013, pp.660~667.
· Yang, J., et al., “Concentrations and seasonal variation of ambient PM-2.5 and
· associated metals at a typical residential area in Beijing, China”, Bull. Environ. Contam.
· Toxicol., 94, 2015, pp.232~239.
· Zhang, Y.M., et al., “Chemical composition andmass size distribution of PM-1 at an
· elevated site in central east China”, Atmos. Chem. Phys., 14, 2014, pp.12237 ~12249.
· Hayeck, N., et al., “Monitoring of organic contamination in the ambient air
· ofmicroelectronic clean room by proton-transfer reaction/time-of-flight/mass
· spectrometry (PTR-ToF-MS),” International Journal of Mass Spectrometry, 392, 2015,
· pp.102~110.
· Sahu, L. K. and Saxena Pallavi, “High time and mass resolved PTR-TOF-MS
· measurements of VOCs at an urban site of India during winter: Role of
· anthropogenic,
· biomass burning, biogenic and photochemical sources,” Atmos. Research, 164~165,
· 2015. pp.84~94.
· Müller, M., et. al., “A compact PTRToF- MS instrument for airborne
· measurements of volatile organic compounds at high spatiotemporal resolution,”
· Atmos. Measure. Tech., 7, 2014, pp.3763~3772.
· Jordan, A., et al., “A high resolution and high sensitivity proton-transfer-reaction
· time-of-flight mass spectrometer (PTR–ToF–MS),” Intern. J. of Mass Spect., 286,
· 2009, pp.122~128.
· De Gouw, J. and Warneke, C., “Measurements of volatile organic compounds in
· the earth’s atmosphere using proton-transfer-reaction mass spectrometry,” Mass
· Spectrometry Reviews, 26, 2006, pp.223~257.
· Chun-Sheng Liang et al., “Review on recent progress in observations, source
· identifications and countermeasures of PM-2.5”, Environment International, 86, 2016,
· pp.150~170