SILVER
SILVER 등급의 판매자 자료

정규분포와 레일리분포

정규분포와 레일리분포에 대한 레포트자료입니다.
3 페이지
한컴오피스
최초등록일 2010.12.17 최종저작일 2010.05
3P 미리보기
정규분포와 레일리분포
  • 미리보기

    소개

    정규분포와 레일리분포에 대한 레포트자료입니다.

    목차

    1.정규분포(normal distribution)
    1)정규분포의 역사
    2)정규분포의 개요
    3)정규분포의 특징
    4)정규분포의 표준화
    2.레일리 분포(Rayleigh distribution)
    1)레일리 분포의 개요
    2)레일리 분포의 특징
    3)레일리 분포의 예

    본문내용

    1.정규분포(normal distribution)

    1)정규분포의 역사
    정규분포는 드무아브르가 1733년 쓴 글에서 특정 이항 분포의 n이 클 때 그 분포의 근사치를 계산하는 것과 관련하여 처음 소개되었고 이 글은 그의 저서 《우연의 교의》 2판(1738년)에 다시 실렸다. 라플라스는 그의 저서 《확률론의 해석이론》(1812년)에서 이 결과를 확장하였고 이는 오늘날 드무아브르-라플라스의 정리로 알려져있다. 라플라스는 실험 오차를 분석하면서 정규분포를 사용했다. 1805년에는 르장드르가 매우 중요한 방법인 최소 제곱법을 도입했다. 가우스는 이 방법을 1794년부터 사용해왔다고 주장했는데 1809년에는 실험 오차가 정규분포를 따른다는 가정하에 최소 제곱법을 이론적으로 엄밀히 정당화했다. 이 분포가 최초의 발견자 이름을 따지 않고 가우스 분포로 불리는 것은 과학적 발견은 그 최초 발견자의 이름을 따지 않는다는 스티글러의 명명법칙의 한 예이다.

    참고자료

    · 없음
  • 자료후기

    Ai 리뷰
    자료의 품질이 높고, 전문적인 내용이 많아 과제에 바로 활용할 수 있었습니다. 지식판매자에게 감사드리며, 계속해서 좋은 자료 부탁드립니다! 감사합니다.
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
        자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
        저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

    함께 구매한 자료도 확인해 보세요!

    찾으시던 자료가 아닌가요?

    지금 보는 자료와 연관되어 있어요!
    왼쪽 화살표
    오른쪽 화살표
    문서 초안을 생성해주는 EasyAI
    안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2025년 05월 30일 금요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    3:14 오후