• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

VOD 서비스 플랫폼에서 협력 필터링을 이용한 TV 프로그램 개인화 추천 (Personalized TV Program Recommendation in VOD Service Platform Using Collaborative Filtering)

10 페이지
기타파일
최초등록일 2025.07.18 최종저작일 2013.01
10P 미리보기
VOD 서비스 플랫폼에서 협력 필터링을 이용한 TV 프로그램 개인화 추천
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 독창성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🎯 VOD 서비스를 위한 혁신적인 개인화 추천 방법론 제시
    • 💡 TV 프로그램의 시리즈 특성을 고려한 독창적인 협력 필터링 접근법
    • 📊 기존 알고리즘 대비 높은 정확도와 낮은 계산량 입증

    미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 18권 / 1호 / 88 ~ 97페이지
    · 저자명 : 한성희, 오연희, 김희정

    초록

    개인화된 추천을 제공하기 위한 협력 필터링은 추천 시스템에서 성공적으로 활용되어 온 기법이다. 그러나 협력 필터링이 주로 연구 및 적용된 분야들은 사용자로부터의 명시적 피드백이 존재하는 독립된 아이템들을 추천하는 것에 초점을 두고 있다. VOD 서비스 플랫폼에서 개인화된 TV 프로그램을 추천하기 위해서는 해당 도메인의 특성과 제한들을 고려하는 것이 필요하다. 본 논문에서는 TV 프로그램의 시리즈 속성을 이용하여, 선호를 판단하기 힘든 비명시적 피드백인 회별 프로그램 시청기록을 명시적이고 지속적인 프로그램 선호도로 변환하는 방법을 고안하였다. 데이터 수집과 최종 추천은 회별 프로그램 단위로 이루어지면서 협력 필터링 처리 단위는 프로그램으로 변경되어 TV 프로그램 VOD 추천 환경에 가장 적당한 형태로 협력 필터링을 변형 적용하였다. 실험 결과는 고안된 추천 시스템이 단순히 협력 필터링을 적용했을 때보다 높은 정확도와 더 적은 계산량을 가지는 것을 보여준다. 도메인 특화된 이러한 변형은 추천 시스템의 알고리즘 모듈로 구성되어 기존에 알려진 다양한 협력 필터링 기법과 결합하여 사용될 수 있다.

    영어초록

    Collaborative filtering(CF) for the personalized recommendation is a successful and popular method in recommender systems. But the mainly researched and implemented cases focus on dealing with independent items with explicit feedback by users. For the domain of TV program recommendation in VOD service platform, we need to consider the unique characteristic and constraints of the domain. In this paper, we studied on the way to convert the viewing history of each TV program episodes to the TV program preference by considering the series structure of TV program. The former is implicit for personalized preference, but the latter tells quite explicitly about the persistent preference. Collaborative filtering is done by the unit of series while data gathering and final recommendation is done by the unit of episodes. As a result, we modified CF to make it more suitable for the domain of TV program VOD recommendation. Our experimental study shows that it is more precise in performance, yet more compact in calculation compared to the plain CF approaches. It can be combined with other existing CF techniques as an algorithm module.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“방송공학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 07일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:33 오전