• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

랜덤 포레스트를 이용한 감정인식 결과를 바탕으로 스마트폰 중독군 검출 (Smartphone Addiction Detection Based Emotion Detection Result Using Random Forest)

7 페이지
기타파일
최초등록일 2025.07.17 최종저작일 2015.06
7P 미리보기
랜덤 포레스트를 이용한 감정인식 결과를 바탕으로 스마트폰 중독군 검출
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🧠 첨단 기술을 활용한 스마트폰 중독 진단 방법론 제시
    • 📊 ECG와 Eye Gaze 신호를 결합한 혁신적인 접근법
    • 🔬 랜덤 포레스트 분류기를 통한 과학적 중독군 검출 방법

    미리보기

    서지정보

    · 발행기관 : 한국전기전자학회
    · 수록지 정보 : 전기전자학회논문지 / 19권 / 2호 / 237 ~ 243페이지
    · 저자명 : 이진규, 강현우, 강행봉

    초록

    최근 기술의 발달로 국내에 10명 중 8명은 스마트폰을 사용하고 있다. 또한, 스마트폰을 이용한 다양한 어플리케이션들이 개발되었다. 이로 인해, 스마트폰 중독현상이 사회적인 문제로 대두되고 있다. 특히, 스마트폰 중독은 스스로가 조절하기 어렵고, 자각하기 힘들다. 주로 설문지를 중심으로한 연구들에서, 스마트폰 중독을 진단하기 위해 예를 들면 S-척도와 같은 연구를 수행해왔다.
    본 연구에서는 ECG(심전도)와 Eye Gaze 신호를 이용한 검출 방법을 제안하고자 한다. 피험자가 감정 영상을 시청했을 때, 피험자의 ECG 신호와 Eye Gaze 신호를 각각 Shimmer와 스마트아이를 이용하여 측정한다. 더불어, ECG 신호의 S-transform 결과를 특징으로 추출한다. 또한 동공의 직경, 시선과의 거리, 눈 깜빡임으로 구성된 Eye Gaze 신호로부터 12개의 특징을 추출한다. 분류기는 랜덤 포레스트를 이용하여 학습시키고 피험자의 데이터를 이용하여 스마트폰 중독군을 검출한다. 검출한 결과와 실험 전 진행한 S-척도 결과와 비교한 결과 ECG는 87.89%의 정확도, Eye Gaze는 60.25%의 정확도를 보여주는 것을 알 수 있었다.

    영어초록

    Recently, eight out of ten people have smartphone in Korea. Also, many applications of smartphone have increased. So, smartphone addiction has become a social issue. Especially, many people in smartphone addiction can`t control themselves. Sometimes they don`t realize that they are smartphone addiction. Many studies, mostly surveys, have been conducted to diagnose smartphone addiction, e.g. S-measure.
    In this paper, we suggest how to detect smartphone addiction based on ECG and Eye Gaze. We measure the signals of ECG from the Shimmer and the signals of Eye Gaze from the smart eye when the subjects see the emotional video. In addition, we extract features from the S-transform of ECG. Using Eye Gaze signals(pupil diameter, Gaze distance, Eye blinking), we extract 12 features. The classifier is trained using Random Forest. The classifiers detect the smartphone addiction using the ECG and Eye Gaze signals. We compared the detection results with S-measure results that surveyed before test. It showed 87.89% accuracy in ECG and 60.25% accuracy in Eye Gaze.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전기전자학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 콘크리트 마켓 시사회
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 11월 26일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:46 오후