• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

기계학습을 활용한 스마트폰 과의존 예측분석 (Predictive Analysis of Problematic Smartphone Use by Machine Learning Technique)

7 페이지
기타파일
최초등록일 2025.07.17 최종저작일 2020.02
7P 미리보기
기계학습을 활용한 스마트폰 과의존 예측분석
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 신뢰성
    • 전문성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 기계학습 기법을 활용한 과학적이고 체계적인 스마트폰 과의존 분석
    • 📊 다양한 분류분석 방법(의사결정트리, 랜덤포레스트, SVM)의 비교 연구
    • 🎯 실제 대규모 데이터(25,465명)를 기반으로 한 실증적 연구

    미리보기

    서지정보

    · 발행기관 : 한국컴퓨터정보학회
    · 수록지 정보 : 한국컴퓨터정보학회논문지 / 25권 / 2호 / 213 ~ 219페이지
    · 저자명 : 김유정, 이동수

    초록

    본 연구는 스마트폰 과의존을 진단하고 예측하기 위하여 할 수 있는 분류분석 방법과 스마트폰 과의존 분류율에 영향을 미치는 중요변수를 규명하고자 시도되었다. 이를 위해 인공지능의 방법인 기계학습분석 기법 중 의사결정트리, 랜덤포레스트, 서포트벡터머신의 분류율을 비교하였다. 자료는 한국정보화진흥원에서 제공한 ‘2018년 스마트폰 과의존 실태조사’에 응답한 25,465명의 데이터였고, R 통계패키지(ver. 3.6.2)를 사용하여 분석하였다. 분석한 결과, 3가지 분류분석 기법은 정분류율이 유사하게 나타났으며, 모델에 대한 과적합 문제가 발생되지 않았다. 3가지 분류분석 방법 중 서포트벡터머신의 분류율이가장 높게 나타났고, 다음으로 의사결정트리 기법, 랜덤포레스트 기법 순이었다. 스마트폰 이용 유형중 분류율에 영향을 미치는 상위 3개 변수는 생활서비스형, 정보검색형, 여가추구형이었다.

    영어초록

    In this paper, we propose a classification analysis method for diagnosing and predicting problematic smartphone use in order to provide policy data on problematic smartphone use, which is getting worse year after year. Attempts have been made to identify key variables that affect the study. For this purpose, the classification rates of Decision Tree, Random Forest, and Support Vector Machine among machine learning analysis methods, which are artificial intelligence methods, were compared. The data were from 25,465 people who responded to the ‘2018 Problematic Smartphone Use Survey’ provided by the Korea Information Society Agency and analyzed using the R statistical package (ver. 3.6.2). As a result, the three classification techniques showed similar classification rates, and there was no problem of overfitting the model. The classification rate of the Support Vector Machine was the highest among the three classification methods, followed by Decision Tree and Random Forest. The top three variables affecting the classification rate among smartphone use types were Life Service type, Information Seeking type, and Leisure Activity Seeking type.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국컴퓨터정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 02일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:42 오전