PARTNER
검증된 파트너 제휴사 자료

로지스틱 회귀분석과 인공신경망을 적용한 내부회계관리제도 평가모형의 성과비교 (Performance Comparison of Internal Accounting Control Assessment Models Applying Logistic Regression and Neural Networks)

30 페이지
기타파일
최초등록일 2025.07.17 최종저작일 2012.12
30P 미리보기
로지스틱 회귀분석과 인공신경망을 적용한 내부회계관리제도 평가모형의 성과비교
  • 미리보기

    서지정보

    · 발행기관 : 한국국제회계학회
    · 수록지 정보 : 국제회계연구 / 46호 / 1 ~ 30페이지
    · 저자명 : 김명종

    초록

    본 연구에서는 로지스틱 회귀분석 및 인공신경망을 적용한 내부회계관리제도 평가모형을 개발하고 각 모형의 성과를 설명력, 검정력 및 예측력 등의 다양한 적합도 관점에서 비교함으로써 내부회계관리제도 평가모형의 효과적인 구축 방안을 제안하고자 한다. 이를 위하여 2006년부터 2009년까지 중요한 취약점을 보고한 111개 취약 기업과 취약점이 발견되지 않은 333개 정상 기업을 표본기업으로 선정하였다. 모형개발에 사용된 변수는 기존 선행연구에서 사용된 23개 변수 중 요인분석과 ROC분석을 이용하여 6개의 재무변수(총자산, 자기자본순이익률, 총자본회전률, 유동비율, 유보비율, 영업현금흐름비율)를 선정하였다.
    설명모형 비교분석에서 로지스틱 회귀분석은 자기자본순이익률, 유보비율, 영업현금흐름비율이 내부통제 취약점의 발생가능성과 유의적인 음(-)의 관계성을 가지고 있음을 보여주었다. 인공신경망의 경우 유보비율, 유동비율, 자기자본순이익률, 총자본회전률, 영업현금흐름비율, 총자산 순으로 내부통제 취약점의 발생가능성에 영향을 미칠 수 있음을 분석하였다. 또한 ROC분석을 통한 모형의 적합성 검증에서는 인공신경망이 로지스틱 회귀분석보다 우수한 검정력을 보유하고 있음을 확인하였다.
    예측모형의 비교분석을 위하여 총 30회의 교차타당성 분석을 수행하였다. 예측력 검증 결과 로지스틱 회귀분석 및 인공신경망의 평균 예측력은 각각 75.9% 및 77.9%로 인공신경망의 정확도가 우수한 것으로 나타났으며 모형의 예측력 차이에 대한 t-test 결과에서도 1% 유의수준에서 인공신경망의 성과가 우수함을 확인하였다. 또한 ROC분석 결과는 예측모형에 있어서도 인공신경망이 보다 우수한 검정력을 보유하고 있음을 보여주었다.
    본 연구는 내부통제 평가모형에 주로 활용되어 왔던 로지스틱 회귀분석과 인공신경망의 성과를 적합도 관점에서 비교분석하였다. 분석 결과 인공신경망 기법을 이용하여 우수한 설명력, 검정력 및 예측력을 보유한 내부통제 평가모형을 구성할 수 있음을 보여주었고 결과적으로 효과적인 내부관리회계제도 평가모형의 구축 가능성을 제시하였다.

    영어초록

    The objectives of this study are to develop internal accounting control assessment models by applying logistic regression(LR) and neural networks(NN), and to compare the performances of both models in the perspective of various goodness-of-fit tests including explanatory capacity, power and prediction accuracy. We collect 444 firms, a quarter of which announced ICW problem on their internal accounting control review report and the rest of which did not. The 6 independent variables are selected from factor analysis and ROC analysis.
    In the comparison of explanatory model, LR shows that three variables(net income/equity, retained earning/asset and OCF/asset) have negative relation with likelihood of ICW, meanwhile NN shows that 6 firm-specific variables have the effect on likelihood of ICW in the order of retained earnings/total asset, current assets/current liabilities, ROE, total assets/sales, OCF/total assets, and total assets. ROC analysis also shows that NN has higher power than LR.
    In the comparison of prediction model, the prediction accuracy of LR and NN is 75.9% and 77.9%, respectively. The results of t-test show that the prediction accuracy of each model is significantly different at 1% significance level. The results of ROC analysis show that NN also has higher power than LR in prediction model.
    This study analyzes the performances of LR and NN in terms of the goodness of fit, thus the results demonstrate an effective implementation method of internal accounting control assessment models.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“국제회계연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 02일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:11 오후