• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

이산 비선형 시스템에 대한 유한 임펄스 응답고정 시간 지연 평활기 (A Finite Impulse Response Fixed-lag Smoother for Discrete-time Nonlinear Systems)

4 페이지
기타파일
최초등록일 2025.07.17 최종저작일 2015.09
4P 미리보기
이산 비선형 시스템에 대한 유한 임펄스 응답고정 시간 지연 평활기
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 논리성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 이산 비선형 시스템의 고급 추정 방법론 제시
    • 🧮 최적 유한 임펄스 응답(FIR) 평활기 알고리즘 소개
    • 💡 선형화 오류를 고려한 혁신적인 상태 추정 접근법 제공

    미리보기

    서지정보

    · 발행기관 : 제어·로봇·시스템학회
    · 수록지 정보 : 제어.로봇.시스템학회 논문지 / 21권 / 9호 / 807 ~ 810페이지
    · 저자명 : 권보규, 한세경, 한수희

    초록

    In this paper, a finite impulse response(FIR) fixed-lag smoother is proposed for discrete-time nonlinear systems. If the actual state trajectory is sufficiently close to the nominal state trajectory, the nonlinear system model can be divided into two parts: The error-state model and the nominal model. The error state can be estimated by adapting the optimal time-varying FIR smoother to the error-state model, and the nominal state can be obtained directly from the nominal trajectory model. Moreover, in order to obtain more robust estimates, the linearization errors are considered as a linear function of the estimation errors. Since the proposed estimator has an FIR structure, the proposed smoother can be expected to have better estimation performance than the IIR-structured estimators in terms of robustness and fast convergence. Additionally the proposed method can give a more general solution than the optimal FIR filtering approach, since the optimal FIR smoother is reduced to the optimal FIR filter by setting the fixed-lag size as zero. To illustrate the performance of the proposed method, simulation results are presented by comparing the method with an optimal FIR filtering approach and linearized Kalman filter.

    영어초록

    In this paper, a finite impulse response(FIR) fixed-lag smoother is proposed for discrete-time nonlinear systems. If the actual state trajectory is sufficiently close to the nominal state trajectory, the nonlinear system model can be divided into two parts: The error-state model and the nominal model. The error state can be estimated by adapting the optimal time-varying FIR smoother to the error-state model, and the nominal state can be obtained directly from the nominal trajectory model. Moreover, in order to obtain more robust estimates, the linearization errors are considered as a linear function of the estimation errors. Since the proposed estimator has an FIR structure, the proposed smoother can be expected to have better estimation performance than the IIR-structured estimators in terms of robustness and fast convergence. Additionally the proposed method can give a more general solution than the optimal FIR filtering approach, since the optimal FIR smoother is reduced to the optimal FIR filter by setting the fixed-lag size as zero. To illustrate the performance of the proposed method, simulation results are presented by comparing the method with an optimal FIR filtering approach and linearized Kalman filter.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:56 오전