• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

3차원 탄성파자료의 층서구분을 위한 패치기반 기계학습 방법의 개선 (Improvements in Patch-Based Machine Learning for Analyzing Three-Dimensional Seismic Sequence Data)

12 페이지
기타파일
최초등록일 2025.07.16 최종저작일 2022.05
12P 미리보기
3차원 탄성파자료의 층서구분을 위한 패치기반 기계학습 방법의 개선
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 첨단 기계학습 기법을 탄성파 해석에 적용한 혁신적인 연구
    • 💡 데이터 부족 문제를 해결하기 위한 창의적인 접근법 제시
    • 🌟 U-Net 모델을 활용한 층서 구분 방법론의 실질적인 개선

    미리보기

    서지정보

    · 발행기관 : 한국지구물리.물리탐사학회
    · 수록지 정보 : 지구물리와 물리탐사 / 25권 / 2호 / 59 ~ 70페이지
    · 저자명 : 이동욱, 문혜진, 김충호, 문성훈, 이수환, 주형태

    초록

    최근의 연구들을 통해 기계학습은 탄성파 해석 분야에 그 적용 범위를 확장하고 있으며, 탄성파 해석에서 중요한 탄성파 층서 구분을 수 행하는 합성곱 신경망들의 개발도 수행되었다. 하지만 지도 학습의 경우 대량의 학습 자료가 필요하며, 비용과 시간의 한계로 탄성파 층 서구분의 지도학습은 학습 자료의 부족이 문제가 될 수 있다. 이번 연구에서는 자료 부족 문제를 보완하기위해 탄성파 단면에 패치 분할 과 자료증강을 적용하였다. 또한 패치 분할로 손실될 수 있는 공간정보를 제공하기 위해 깊이를 고려할 수 있는 인공 채널을 생성하여 추 가하였다. 실험을 위한 학습 모델로 U-Net을 사용하였으며, 층서 구분을 위한 학습 자료가 제공되는 F3 block 자료를 이용하여 학습과 예 측 결과에 대한 평가를 수행하였다. 분석 결과 자료증강과 인공 채널의 추가로 패치 기반의 층서 구분 학습 모델을 개선할 수 있음을 확 인하였다.

    영어초록

    Recent studies demonstrate that machine learning has expanded in the field of seismic interpretation. Many convolutional neural networks have been developed for seismic sequence identification, which is important for seismic interpretation. However, expense and time limitations indicate that there is insufficient data available to provide a sufficient dataset to train supervised machine learning programs to identify seismic sequences. In this study, patch division and data augmentation are applied to mitigate this lack of data. Furthermore, to obtain spatial information that could be lost during patch division, an artificial channel is added to the original data to indicate depth. Seismic sequence identification is performed using a U-Net network and the Netherlands F3 block dataset from the dGB Open Seismic Repository, which offers datasets for machine learning, and the predicted results are evaluated. The results show that patch-based U-Net seismic sequence identification is improved by data augmentation and the addition of an artificial channel.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 27일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:17 오후