• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

탄성파 자료 잡음 제거를 위한 비지도 학습 연구 (The Use of Unsupervised Machine Learning for the Attenuation of Seismic Noise)

14 페이지
기타파일
최초등록일 2025.07.16 최종저작일 2022.05
14P 미리보기
탄성파 자료 잡음 제거를 위한 비지도 학습 연구
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 첨단 비지도 학습 기반 탄성파 잡음 제거 기술 소개
    • 🧠 3가지 기계학습 모델의 성능 비교 분석
    • 🌊 실제 현장 및 인공 합성 데이터에 대한 실증적 연구

    미리보기

    서지정보

    · 발행기관 : 한국지구물리.물리탐사학회
    · 수록지 정보 : 지구물리와 물리탐사 / 25권 / 2호 / 71 ~ 84페이지
    · 저자명 : 김수정, 전형구

    초록

    탄성파 자료 취득 시 신호와 함께 기록되는 다양한 형태의 잡음은 탄성파 자료의 정확한 해석을 방해하는 요인으로 작용한다. 따라서 탄 성파 자료의 잡음 제거는 탄성파 자료 처리 과정 중 필수적인 절차이므로 기계 학습을 포함한 다양한 방식의 잡음 제거 연구가 수행되고 있다. 본 연구에서는 비지도 학습 기반의 탄성파 잡음 제거 모델을 이용하여 중합 전 탄성파 자료의 잡음 제거를 수행하고자 하였으며 총 세 가지의 비지도 학습 기반 기계 학습 모델을 비교하였다. 세 가지의 비지도 학습 모델은 N2NUNET, PATCHUNET, DDUL로 각각 서로 다른 신경망 구조를 통해 정답 자료 없이 탄성파 잡음을 제거한다. 세 가지 모델들을 인공 합성 및 현장 중합 전 탄성파 자료에 적용하여 잡음을 제거한 후 그 결과를 정성적·정량적으로 분석하였으며, 분석 결과 세 가지 비지도 학습 모델 모두 인공 합성 및 현장 자료의 탄성 파 잡음을 적절히 제거하였음을 확인하였다. 그 중 N2NUNET 모델이 가장 낮은 잡음 제거 성능을 보여주었으며, PATCHUNET과 DDUL 은 거의 유사한 결과를 도출하였지만, DDUL이 정량적으로 근소한 우위를 보였다.

    영어초록

    When acquiring seismic data, various types of simultaneously recorded seismic noise hinder accurate interpretation. Therefore, it is essential to attenuate this noise during the processing of seismic data and research on seismic noise attenuation. For this purpose, machine learning is extensively used. This study attempts to attenuate noise in prestack seismic data using unsupervised machine learning. Three unsupervised machine learning models, N2NUNET, PATCHUNET, and DDUL, are trained and applied to synthetic and field prestack seismic data to attenuate the noise and leave clean seismic data. The results are qualitatively and quantitatively analyzed and demonstrated that all three unsupervised learning models succeeded in removing seismic noise from both synthetic and field data. Of the three, the N2NUNET model performed the worst, and the PATCHUNET and DDUL models produced almost identical results, although the DDUL model performed slightly better.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 31일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:48 오전