• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

Blurry 클래스 증분 학습 환경에서의 효율적인 프롬프트 학습 방법 (Efficient Prompt Learning Method in Blurry Class Incremental Learning Environment)

8 페이지
기타파일
최초등록일 2025.07.15 최종저작일 2024.07
8P 미리보기
Blurry 클래스 증분 학습 환경에서의 효율적인 프롬프트 학습 방법
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 최신 연속 학습 트렌드인 Blurry 클래스 증분 학습 방법론 제시
    • 🧠 Vision Transformer 기반 프롬프트 메커니즘의 혁신적 접근법 소개
    • 💡 실제 현실적인 데이터 학습 시나리오에 대한 실험적 접근

    미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 51권 / 7호 / 655 ~ 662페이지
    · 저자명 : 오윤석, 최동완

    초록

    연속 학습은 일련의 태스크로 구성된 데이터를 연속적으로 학습하면서 성능을 유지하는 것을 목표로 한다. 보편적 시나리오인 태스크 간 클래스가 겹치지 않는 disjoint 연속 학습과는 달리, blurry 연속 학습은 태스크 간 클래스가 겹치는 보다 현실적인 시나리오를 다룬다. 기존 대부분의 연속 학습 연구는 disjoint 시나리오에 초점을 맞추어 진행되어 왔고, 최근에는 ViT(Vision Transformer) 모델에 프롬프트 메커니즘을 적용하는 프롬프트 기반 연속 학습이 많은 관심을 받고 있다. 본 논문에서는 프롬프트 기반 연속 학습 방법을 기반으로 blurry 클래스 증분 학습에 적합한 유사도 함수를 적용시킴으로써 실험을 통해 그 성능을 분석한다. 이를 통해 우리의 방법이 더 효율적으로 blurry 데이터를 학습하는 것을 입증하면서 우수성을 확인한다.

    영어초록

    Continual learning is the process of continuously integrating new knowledge to maintain performance across a sequence of tasks. While disjoint continual learning, which assumes no overlap between classes across tasks, blurry continual learning addresses more realistic scenarios where overlaps do exist. Traditionally, most related works have predominantly focused on disjoint scenarios and recent attention has shifted towards prompt-based continual learning. This approach uses prompt mechanism within a Vision Transformer (ViT) model to improve adaptability. In this study, we analyze the effectiveness of a similarity function designed for blurry class incremental learning, applied within a prompt-based continual learning framework. Our experiments demonstrate the success of this method, particularly in its superior ability to learn from and interpret blurry data.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 02일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:25 오전