• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

트위터에서의 COVID-19와 관련된 반시민성 주제 탐색: 혐오 대상 및 키워드 분석 (Investigating Topics of Incivility Related to COVID-19 on Twitter: Analysis of Targets and Keywords of Hate Speech)

20 페이지
기타파일
최초등록일 2025.07.13 최종저작일 2022.03
20P 미리보기
트위터에서의 COVID-19와 관련된 반시민성 주제 탐색: 혐오 대상 및 키워드 분석
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔍 코로나19 관련 사회적 여론의 심층적인 데이터 분석 제공
    • 📊 소셜 미디어 데이터 마이닝을 통한 혐오 트렌드 연구
    • 🌐 포스트 코로나 시대 정책 수립을 위한 실질적 인사이트 제공

    미리보기

    서지정보

    · 발행기관 : 한국정보관리학회
    · 수록지 정보 : 정보관리학회지 / 39권 / 1호 / 331 ~ 350페이지
    · 저자명 : 김규리, 오찬희, 주영준

    초록

    본 연구는 코로나바이러스감염증-19 (이하 코로나19)로 인해 생겨난 코로나19 반시민성 주제와 코로나19 혐오 정서를 파악하기 위해 소셜 미디어 중 하나인 트위터의 코로나19 관련 게시물을 분석하였다. 2019년 12월 1일부터 2021년 8월 31일까지 21개월 동안 작성된 코로나19 관련 혐오 대상별(지역, 공공시설 혐오, 특정 인구 집단 혐오, 종교 혐오) 게시물 수집 및 전처리를 진행하여 총 63,802개의 게시물을 분석하였다. 혐오 대상별 빈도 분석, 다이나믹 토픽 모델링, 키워드 동시 출현 네트워크 분석 기법을 통하여 혐오 대상별 반시민성 주제와 혐오 키워드를 파악하였다. 첫째, 빈도 분석 결과, 지역, 공공시설 혐오는 상대적으로 증가하는 추세를 보이고 특정 인구 집단과 종교 혐오는 상대적으로 감소하는 추세를 확인할 수 있었다. 둘째, 다이나믹 토픽 모델링 분석 결과, 지역, 공공시설 혐오는 ‘대구, 경북지방 혐오’, ‘지역 간 혐오’, ‘공공시설 혐오’로 나타났고, 특정 인구 집단 혐오는 ‘중국 혐오’, ‘바이러스 전파자’, ‘실외(야외)활동 제재’로 나타났으며, 종교 혐오는 ‘신천지’, ‘기독교’, ‘종교 내 감염’, ‘방역 의무 거부’, ‘확진자 동선 비난’으로 나타났다. 셋째, 키워드 동시 출현 네트워크 분석 결과, 지역, 공공시설 혐오(코로나, 대구, 확진자, 신천지, 경북, 지역), 특정 인구 집단 혐오(코로나바이러스, 우한폐렴, 우한, 중국, 중국인, 사람, 입국, 금지), 종교 혐오(신천지, 코로나, 교회, 대구, 확진자, 감염) 등을 핵심 키워드로 확인할 수 있었다. 본 연구는 소셜 미디어를 활용한 국내 코로나19 혐오 대상 및 키워드 파악을 통해 코로나19 관련한 대중의 반시민성 여론을 파악하고자 하였다. 특히 기존의 선행연구에서 시도하지 않았던 주제인 코로나19 관련 혐오에 데이터 마이닝 기법을 이용하여 소셜 미디어에서 표출하는 대중의 반시민성 주제와 혐오 정서 탐색은 대중들의 여론을 파악하는 것이 의의가 있다. 더불어 본 연구 결과는 포스트 코로나 시대를 대비하는 문화적 소통 방안의 제도 및 정책 수립 기여를 위한 기본 자료에 기초할 수 있다는 점에서 실질적 함의를 시사한다.

    영어초록

    This study aims to understand topics of incivility related to COVID-19 from analyzing Twitter posts including COVID-19-related hate speech. To achieve the goal, a total of 63,802 tweets that were created between December 1st, 2019, and August 31st, 2021, covering three targets of hate speech including region and public facilities, groups of people, and religion were analyzed. Frequency analysis, dynamic topic modeling, and keyword co-occurrence network analysis were used to explore topics and keywords. 1) Results of frequency analysis revealed that hate against regions and public facilities showed a relatively increasing trend while hate against specific groups of people and religion showed a relatively decreasing trend. 2) Results of dynamic topic modeling analysis showed keywords of each of the three targets of hate speech. Keywords of the region and public facilities included “Daegu, Gyeongbuk local hate”, “interregional hate”, and “public facility hate”; groups of people included “China hate”, “virus spreaders”, and “outdoor activity sanctions”; and religion included “Shincheonji”, “Christianity”, “religious infection”, “refusal of quarantine”, and “places visited by confirmed cases”. 3) Similarly, results of keyword co-occurrence network analysis revealed keywords of three targets: region and public facilities (Corona, Daegu, confirmed cases, Shincheonji, Gyeongbuk, region); specific groups of people (Coronavirus, Wuhan pneumonia, Wuhan, China, Chinese, People, Entry, Banned); and religion (Corona, Church, Daegu, confirmed cases, infection). This study attempted to grasp the public’s anti-citizenship public opinion related to COVID-19 by identifying domestic COVID-19 hate targets and keywords using social media. In particular, it is meaningful to grasp public opinion on incivility topics and hate emotions expressed on social media using data mining techniques for hate-related to COVID-19, which has not been attempted in previous studies. In addition, the results of this study suggest practical implications in that they can be based on basic data for contributing to the establishment of systems and policies for cultural communication measures in preparation for the post-COVID-19 era.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보관리학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 07일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:27 오후