• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

공간 키워드 유사도 기반의 부분적 집단 공간 키워드 질의처리 기법 (Partially Collective Spatial Keyword Query Processing Based on Spatial Keyword Similarity)

12 페이지
기타파일
최초등록일 2025.07.13 최종저작일 2021.10
12P 미리보기
공간 키워드 유사도 기반의 부분적 집단 공간 키워드 질의처리 기법
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 논리성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔍 공간 키워드 질의의 혁신적인 접근법 제시
    • 💡 부분적 집단 공간 키워드 질의의 새로운 개념 소개
    • 🚀 성능 최적화를 위한 구체적인 탐색 기법 제안

    미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 48권 / 10호 / 1142 ~ 1153페이지
    · 저자명 : 이아현, 박세화, 박석

    초록

    집단적 공간 키워드 질의(collective spatial keyword query)는 질의 위치와 가까우면서 제시된 키워드 집합을 모두 포함하는 관심지점(point of interest; POI)들을 반환한다. 하지만 고정된 수의 질의 키워드를 고려하므로 사용자의 부분 키워드 집합에 대한 선호도를 충분히 반영할 수 없다. 따라서 POI 마다 선호도에 맞는 키워드를 유동적으로 고려하는 새로운 질의인 부분적 집단 공간 키워드 질의(partial collective spatial keyword query)를 제안한다. 이 질의는 조합 최적화 문제이므로 POI의 수가 늘어남에 따라 수행 시간이 급격하게 증가한다. 따라서 이러한 문제를 해결하기 위해 전체적인 탐색 공간을 줄이는 키워드 기반 탐색 기법을 제안한다. 또한 키워드의 부분집합을 계산하는 시간을 줄이기 위해 선형 탐색에 기반한 단말노드 가지치기 기법과 근사 알고리즘 기법 및 임계값에 기반한 가지치기 기법들을 제안한다.

    영어초록

    Collective spatial keyword queries return Points of Interest (POI), which are close to the query location and contain all the presented set of keywords. However, existing studies only consider a fixed number of query keywords, which is not adequate to satisfy the user. They do not care about the preference of a partial keyword set, and a flexible keyword set needs to be selected for the preference of each POI. We thus propose a new query, called Partially Collective Spatial Keyword Query, which flexibly considers keywords that fit the preference for each POI. Since this query is a combinatorial optimization problem, the query processing time increases rapidly as the number of POIs increases. Therefore, to address these problems, we propose a keyword-based search technique that reduces the overall search space. Furthermore, we propose heuristic techniques, which include the linear search-based terminal node pruning technique, approximation algorithm, and threshold-based pruning technique.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:55 오전