• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

효과적인 지식확장을 위한 LOD 클라우드에서의 변화수용적 심층검색 (Change Acceptable In-Depth Searching in LOD Cloud for Efficient Knowledge Expansion)

23 페이지
기타파일
최초등록일 2025.07.13 최종저작일 2018.06
23P 미리보기
효과적인 지식확장을 위한 LOD 클라우드에서의 변화수용적 심층검색
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 논리성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🌐 LOD 클라우드에서의 혁신적인 연결정책 접근법 제시
    • 🔍 시멘틱 웹 검색의 한계를 극복하는 실질적인 방법론 제공
    • 💡 지식확장을 위한 심층적이고 체계적인 연구 방법론 소개

    미리보기

    서지정보

    · 발행기관 : 한국지능정보시스템학회
    · 수록지 정보 : 지능정보연구 / 24권 / 2호 / 171 ~ 193페이지
    · 저자명 : 김광민, 손용락

    초록

    본 연구는 시멘틱 웹의 실질적 구현체인 LOD 클라우드에서 연결정책을 활용함으로써 LOD들간 연결을 효과적으로 제공하고 LOD의 변경된 내용을 검색결과에 빠짐없이 반영할 수 있는 방안을 제시한다. 현재 LOD 클라우드에서는 개체간 연결은 <owl:sameAs>를 이용하여 개체들이 동일함을 명시적으로 기술하는 방식으로 이루어져 있다. 하지만, 이러한 명시적 연결방식은 LOD 클라우드 규모의 방대함에도 불구하고 개체간 동일성을 개체단위에서 파악하여야 하는 어려움이 있으며 주기적으로 LOD에 추가하여야 함에 따라 검색 시 개체들이 누락되는 한계가 있다. 이를 극복하기 위하여 본 연구에서는 명시적 연결을 생성하는 대신 LOD별로 연결하고자하는 LOD와의 연결정책을 수립하여 LOD와 함께 공개하는 방식을 제안한다. 연결정책을 활용함으로써 연결하여야 할 동일개체를 검색시점에서 파악할 수 있으므로 추가되었던 개체들을 누락됨 없이 검색결과에 포함시킬수 있고 LOD 클라우드에서의 연결성도 효과적으로 확충할 수 있다. 확충된 연결성은 정보의 지능적 처리의 선행과정인 지식확장의 근간이 된다. 연결정책은 연결하고자 하는 소스와 타겟 LOD의 주어 개체들간의 동일성을평가하는데 도움이 되는 술어 쌍을 명세하는 방식으로 수립하며 검색 시 이러한 술어쌍에 대응하는 RDF 트리플을 검색하고 이들의 목적어들이 충분히 동일한 것인가를 평가하여 주어개체들의 동일수준을 판단한다. 본 연구에서는 이러한 연결정책을 이용하여 여러 LOD들을 심층적으로 검색하는 시스템을 구현하였다. 검색과정에서는 기존 명시적 연결들도 함께 활용하도록 구현하였다. 검색시스템에 대한 실험은 DBpedia의 주요 LOD들을대상으로 진행하였다. 실험결과 연결대상 개체들의 목적어들이 0.8 ~ 0.9의 유사수준을 가지는 경우 적정한 확장성을 가지고 충분히 신뢰적인 개체들을 적절하게 포함하는 것으로 확인하였다. 또한, 개체들은 8개 이상의 동일연결을 제공하여야 검색결과가 신뢰적으로 활용될 수 있을 것으로 파악되었다.

    영어초록

    LOD(Linked Open Data) cloud is a practical implementation of semantic web. We suggested a new method that provides identity links conveniently in LOD cloud. It also allows changes in LOD to be reflected to searching results without any omissions. LOD provides detail descriptions of entities to public in RDF triple form. RDF triple is composed of subject, predicates, and objects and presents detail description for an entity. Links in LOD cloud, named identity links, are realized by asserting entities of different RDF triples to be identical. Currently, the identity link is provided with creating a link triple explicitly in which <owl:sameAs> associates its subject and object with source and target entities. Link triples are appended to LOD. With identity links, a knowledge achieves from an LOD can be expanded with different knowledge from different LODs. The goal of LOD cloud is providing opportunity of knowledge expansion to users.
    Appending link triples to LOD, however, has serious difficulties in discovering identity links between entities one by one notwithstanding the enormous scale of LOD. Newly added entities cannot be reflected to searching results until identity links heading for them are serialized and published to LOD cloud. Instead of creating enormous identity links, we propose LOD to prepare its own link policy. The link policy specifies a set of target LODs to link and constraints necessary to discover identity links to entities on target LODs. On searching, it becomes possible to access newly added entities and reflect them to searching results without any omissions by referencing the link policies. Link policy specifies a set of predicate pairs for discovering identity between associated entities in source and target LODs. For the link policy specification, we have suggested a set of vocabularies that conform to RDFS and OWL. Identity between entities is evaluated in accordance with a similarity of the source and the target entities’ objects which have been associated with the predicates’ pair in the link policy. We implemented a system “Change Acceptable In-Depth Searching System(CAIDS)”. With CAIDS, user’s searching request starts from depth_0 LOD, i.e. surface searching. Referencing the link policies of LODs, CAIDS proceeds in-depth searching, next LODs of next depths. To supplement identity links derived from the link policies, CAIDS uses explicit link triples as well. Following the identity links, CAIDS’s in-depth searching progresses. Content of an entity obtained from depth_0 LOD expands with the contents of entities of other LODs which have been discovered to be identical to depth_0 LOD entity. Expanding content of depth_0 LOD entity without user’s cognition of such other LODs is the implementation of knowledge expansion. It is the goal of LOD cloud. The more identity links in LOD cloud, the wider content expansions in LOD cloud. We have suggested a new way to create identity links abundantly and supply them to LOD cloud.
    Experiments on CAIDS performed against DBpedia LODs of Korea, France, Italy, Spain, and Portugal. They present that CAIDS provides appropriate expansion ratio and inclusion ratio as long as degree of similarity between source and target objects is 0.8 ~ 0.9. Expansion ratio, for each depth, depicts the ratio of the entities discovered at the depth to the entities of depth_0 LOD. For each depth, inclusion ratio illustrates the ratio of the entities discovered only with explicit links to the entities discovered only with link policies. In cases of similarity degrees with under 0.8, expansion becomes excessive and thus contents become distorted. Similarity degree of 0.8 ~ 0.9 provides appropriate amount of RDF triples searched as well.
    Experiments have evaluated confidence degree of contents which have been expanded in accordance with in-depth searching. Confidence degree of content is directly coupled with identity ratio of an entity, which means the degree of identity to the entity of depth_0 LOD. Identity ratio of an entity is obtained by multiplying source LOD’s confidence and source entity’s identity ratio. By tracing the identity links in advance, LOD’s confidence is evaluated in accordance with the amount of identity links incoming to the entities in the LOD. While evaluating the identity ratio, concept of identity agreement, which means that multiple identity links head to a common entity, has been considered. With the identity agreement concept, experimental results present that identity ratio decreases as depth deepens, but rebounds as the depth deepens more. For each entity, as the number of identity links increases, identity ratio rebounds early and reaches at 1 finally. We found out that more than 8 identity links for each entity would lead users to give their confidence to the contents expanded. Link policy based in-depth searching method, we proposed, is expected to contribute to abundant identity links provisions to LOD cloud.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지능정보연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 01일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:12 오후