• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

커널 모델과 장단기 기억 신경망을 결합한 보컬 및 비보컬 분리 (Vocal and nonvocal separation using combination of kernel model and long-short term memory networks)

6 페이지
기타파일
최초등록일 2025.07.12 최종저작일 2017.07
6P 미리보기
커널 모델과 장단기 기억 신경망을 결합한 보컬 및 비보컬 분리
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 독창성
    • 신뢰성
    • 유사도 지수
      참고용 안전
    • 🎵 음원 분리 기술의 혁신적인 접근법 제시
    • 🧠 LSTM과 커널 모델의 독창적인 결합 방식 소개
    • 🔬 기존 음원 분리 방식의 한계점을 개선하는 연구

    미리보기

    서지정보

    · 발행기관 : 한국음향학회
    · 수록지 정보 : 한국음향학회지 / 36권 / 4호 / 261 ~ 266페이지
    · 저자명 : 조혜승, 김형국

    초록

    본 논문에서는 커널 모델과 장단기 기억(Long-Short Term Memory, LSTM) 신경망을 결합한 보컬 및 비보컬 분리 방식을 제안한다. 기존의 음원 분리 방식은 비보컬 음원만 있는 구간에서 음원을 오추정하여 불필요한 비보컬음원을 출력하는 한계가 있다. 따라서 본 논문에서는 커널 모델 기반의 보컬음 분리 방식에 LSTM 신경망 기반의 보컬구간 분류 방식을 결합하여 보컬 음원의 오추정 문제를 개선하고 분리 성능을 향상시키고자 하였다. 또한 본 논문에서는 방식간의 결합 구조에 따라 병렬 결합형 분리 알고리즘과 직렬 결합형 분리 알고리즘을 제안하였으며, 실험을 통해제안하는 방식들이 기존의 방식에 비해 더욱 향상된 분리 성능을 보이는 것을 확인할 수 있었다.

    영어초록

    In this paper, we propose a vocal and nonvocal separation method which uses a combination of kernel model and LSTM (Long-Short Term Memory) networks. Conventional vocal and nonvocal separation methods estimate the vocal component even in sections where only non-vocal components exist. This causes a problem of the source estimation error. Therefore we combine the existing kernel based separation method with the vocal/nonvocal classification based on LSTM networks in order to overcome the limitation of the existing separation methods. We propose a parallel combined separation algorithm and series combined separation algorithm as combination structures. The experimental results verify that the proposed method achieves better separation performance than the conventional approaches.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국음향학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 03일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:25 오후