• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

IoT Network에서 위치 인식을 위한 가중치 방식의 최대우도방법을 이용한 하드웨어 위치인식엔진 개발 연구 (A Hardwired Location-Aware Engine based on Weighted Maximum Likelihood Estimation for IoT Network)

9 페이지
기타파일
최초등록일 2025.07.11 최종저작일 2016.11
9P 미리보기
IoT Network에서 위치 인식을 위한 가중치 방식의 최대우도방법을 이용한 하드웨어 위치인식엔진 개발 연구
  • 미리보기

    서지정보

    · 발행기관 : 대한전자공학회
    · 수록지 정보 : 전자공학회논문지 / 53권 / 11호 / 32 ~ 40페이지
    · 저자명 : 김동순, 박현문, 황태호, 원광호

    초록

    센서네트워크 센서노드의 위치정보는 기본적으로 센싱 데이터가 얻어진 위치를 알려주는 목적으로 사용되며 Context 기반 고차원 서비스를 제공하기 위한 가장 중요한 정보중 하나이다. 센서네트워크상에서 위치인식을 위해 다양한 방법들이 연구되고 제안되어 왔으며, 이러한 방법 중에 IEEE 802.15.4 센서네트워크의 물리 계층과 매체 접근 계층을 이용한 위치인식 방법에 관한 연구방법이 크게 대두되고 있다. IEEE 802.15.4 프로토콜은 장치간의 저가격, 저속의 무선 통신을 지향하기 때문에 구현에 있어서 고도화된 최적화가 중요한 요구사항이라 할 수 있다. 하지만 수신 신호의 세기를 가지고 센서 노드들의 위치를 계산하는 방법은 최적화 문제의 해를 구하기 위한 과정이기 때문에 많은 연산 량이 필요로 하게 되고, IEEE802.15.4를 지원하는 System-On-a-Chip (SoC)의 경우 8비트 마이크로 컨트롤러기반으로 설계되어 있다는 점을 고려하면, IEEE802.15.4 기반의 위치 인식 서비스를 위해서는 하드웨어에 기반을 둔 위치 인식 엔진의 필요성이 무엇보다 중요하다. 본 논문은 IEEE 802.15.4 물리계층에 기반을 둔 가중치 기반의 최대우도방법 위치인식기 하드웨어 구현에 관해 제안하고자 한다. 테스트 베드를 이용한 필드테스트 결과 제안하는 하드웨어 기반 가중치 방식의 위치 인식방법은 정확도에서 10% 정도의 개선과 함께 내장 마이크로 컨트롤러의 연산량 및 메모리 액세스를 30% 정도 감소시켜 시스템 전원소모를 줄일 수 있는 결과를 얻을 수 있었다.

    영어초록

    IEEE 802.15.4 is the one of the protocols for radio communication in a personal area network. Because of low cost and low power communication for IoT communication, it requires the highest optimization level in the implementation. Recently, the studies of location aware algorithm based on IEEE802.15.4 standard has been achieved. Location estimation is performed basically in equal consideration of reference node information and blind node information. However, an error is not calculated in this algorithm despite the fact that the coordinates of the estimated location of the blind node include an error. In this paper, we enhanced a conventual maximum likelihood estimation using weighted coefficient and implement the hardwired location aware engine for small code size and low power consumption. On the field test using test-beds, the suggested hardware based location awareness method results better accuracy by 10 percents and reduces both calculation and memory access by 30 percents, which improves the systems power consumption.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전자공학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • EasyAI 무료체험
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 02일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:12 오전