• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

H.264 인트라 부호화를 위한 적응적 가중치 양자화 행렬 선택방법 (Adaptive Selection of Weighted Quantization Matrix for H.264 Intra Video Coding)

9 페이지
기타파일
최초등록일 2025.07.11 최종저작일 2010.09
9P 미리보기
H.264 인트라 부호화를 위한 적응적 가중치 양자화 행렬 선택방법
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 영상 압축 기술의 혁신적인 접근법 제시
    • 💡 H.264 부호화의 성능 개선 방법론 제공
    • 📊 구체적인 실험 결과와 성능 향상 데이터 포함

    미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 15권 / 5호 / 672 ~ 680페이지
    · 저자명 : 조재현, 조숙희, 정세윤, 송병철

    초록

    본 논문은 H.264 동영상 부호화를 위한 적응적인 양자화 행렬 선택방법을 제안한다. 기존의 H.264 양자화 방법은 각 프레임에 동일한 양자화 행렬을 적용하기 때문에 영상의 지역적 특성을 고려하지 못해 코딩 효율이 저하될 수 있다. 이러한 문제점을 개선하고자 프레임 전체에 동일한 양자화 행렬을 적용하는 대신 매크로블록 단위로 블록이 가지는 방향성을 이용해 적응적으로 양자화 행렬을 적용하는 방법을 제안한다. 먼저, 각 블록의 방향성을 공간적으로 인접 블록의 인트라 예측모드 특성을 이용하여 결정한다. 방향성이 존재하는 블록에 대해서는 제안한 방식의 가중치 양자화 행렬을 적용하고, 방향성이 존재하지 않는 블록에 대해서는 기존의 양자화 행렬을 적용한다. 가중치 양자화 행렬은 인트라 예측모드에 따라 블록의 변환 계수의 통계적인 분포를 기반으로 설계되었기 때문에, 예측모드의 특성에 적합하게 양자화된다. 실험 결과를 통해 제안한 알고리즘이 BD rate 측면에서 기존 방법 대비 약 2% 정도의 부호화 효율이 상승됨을 확인할 수 있다.

    영어초록

    This paper presents an adaptive quantization matrix selection scheme for H.264 video encoding. Conventional H.264 coding standard applies the same quantization matrix to the entire video sequence without considering local characteristics in each frame. In this paper, we propose block adaptive selection of quantization matrix according to edge directivity of each block. Firstly, edge directivity of each block is determined using intra prediction modes of its spatially adjacent blocks. If the block is decided as a directional block, new weighted quantization matrix is applied to the block. Otherwise, conventional quantization matrix is used for quantization of the non-directional block. Since the proposed weighted quantization is designed based on statistical distribution of transform coefficients in accordance with intra prediction modes, we can achieve high coding efficiency. Experimental results show that the proposed scheme can improve coding efficiency by about 2% in terms of BD bit-rate.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“방송공학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 22일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:41 오전