• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

궤환구조를 가지는 변별적 가중치 학습에 기반한 음성검출기 (Voice Activity Detection Based on Discriminative Weight Training with Feedback)

7 페이지
기타파일
최초등록일 2025.07.11 최종저작일 2008.11
7P 미리보기
궤환구조를 가지는 변별적 가중치 학습에 기반한 음성검출기
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 논리성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 음성 신호처리 분야의 최신 연구 방법론 제시
    • 🚀 비정상 잡음 환경에서의 혁신적인 음성검출 접근법 소개
    • 💡 변별적 가중치 학습의 새로운 궤환구조 알고리즘 제안

    미리보기

    서지정보

    · 발행기관 : 한국음향학회
    · 수록지 정보 : 한국음향학회지 / 27권 / 8호 / 443 ~ 449페이지
    · 저자명 : 강상익, 장준혁

    초록

    이동통신에서 배경잡음이 존재하는 실제 환경에서 음성신호처리의 가장 중요한 이슈중의 하나는 강인한 음성검출기를
    설계하는 것이다. 상대적으로 간단하면서도 성능이 우수하여 대표적인 음성검출기로 사용되는 통계적모델기반 기법은 각
    주파수 채널별 우도비를 이용하여 음성검출 검출식을 만들어내는 방식이다. 최근, 변별적 가중치 학습 (discriminative
    weight training)을 이용하여 주파수 체널별 가중치가 인가된 우도비를 이용한 음성검출 결정식을 갖는 음성검출기가 제안
    되었으며 상대적으로 우수한 성능을 보였다. 본 연구에서는 기존의 변별적 가중치 학습의 입력벡터에 이전프레임의 결정식
    을 궤환구조형태를 바탕으로 추가하는 새로운 방식을 제안한다. 제안된 기법은 비정상 (non-staionary) 잡음 환경에서
    객관적인 방법을 통해 상호비교 분석되었으며 결론적으로 우수한 성능을 보였다

    영어초록

    One of the key issues in practical speech processing is to achieve robust Voice Activity Deteciton (VAD) against the
    background noise. Most of the statistical model-based approaches have tried to employ equally weighted likelihood
    ratios (LRs), which, however, deviates from the real observation. Furthermore voice activities in the adjacent frames
    have strong correlation. In other words, the current frame is highly correlated with previous frame. In this paper,
    we propose the effective VAD approach based on a minimum classification error (MCE) method which is different
    from the previous works in that different weights are assigned to both the likelihood ratio on the current frame
    and the decision statistics of the previous frame.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국음향학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 27일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:10 오전